RISS 학술연구정보서비스

다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      • 무료
      • 기관 내 무료
      • 유료
      • KCI우수등재

        Comprehensive comparison of normality tests: Empirical study using many different types of data

        Lee, Chanmi,Park, Suhwi,Jeong, Jaesik The Korean Data and Information Science Society 2016 한국데이터정보과학회지 Vol.27 No.5

        We compare many normality tests consisting of different sources of information extracted from the given data: Anderson-Darling test, Kolmogorov-Smirnov test, Cramervon Mises test, Shapiro-Wilk test, Shaprio-Francia test, Lilliefors, Jarque-Bera test, D'Agostino' D, Doornik-Hansen test, Energy test and Martinzez-Iglewicz test. For the purpose of comparison, those tests are applied to the various types of data generated from skewed distribution, unsymmetric distribution, and distribution with different length of support. We then summarize comparison results in terms of two things: type I error control and power. The selection of the best test depends on the shape of the distribution of the data, implying that there is no test which is the most powerful for all distributions.

      • KCI우수등재

        Bayes estimation of entropy of exponential distribution based on multiply Type II censored competing risks data

        Lee, Kyeongjun,Cho, Youngseuk The Korean Data and Information Science Society 2015 한국데이터정보과학회지 Vol.26 No.6

        In lifetime data analysis, it is generally known that the lifetimes of test items may not be recorded exactly. There are also situations wherein the withdrawal of items prior to failure is prearranged in order to decrease the time or cost associated with experience. Moreover, it is generally known that more than one cause or risk factor may be present at the same time. Therefore, analysis of censored competing risks data are needed. In this article, we derive the Bayes estimators for the entropy function under the exponential distribution with an unknown scale parameter based on multiply Type II censored competing risks data. The Bayes estimators of entropy function for the exponential distribution with multiply Type II censored competing risks data under the squared error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) are provided. Lindley's approximate method is used to compute these estimators.We compare the proposed Bayes estimators in the sense of the mean squared error (MSE) for various multiply Type II censored competing risks data. Finally, a real data set has been analyzed for illustrative purposes.

      • KCI우수등재

        A Location Context Management Architecture of Mobile Objects for LBS Application

        Ahn, Yoon-Ae Korean Data and Information Science Society 2007 한국데이터정보과학회지 Vol.18 No.4

        LBS must manage various context data and make the best use of this data for application service in ubiquitous environment. Conventional mobile object data management architecture did not consider process of context data. Therefore a new mobile data management framework is needed to process location context data. In this paper, we design a new context management framework for a location based application service. A suggestion framework is consisted of context collector, context manager, rule base, inference engine, and mobile object context database. It describes a form of rule base and a movement process of inference engine that are based on location based application scenario. It also presents an embodiment instance of interface which suggested framework is applied to location context interference of mobile object.

      • KCI우수등재

        Obtaining bootstrap data for the joint distribution of bivariate survival times

        Kwon, Se-Hyug The Korean Data and Information Science Society 2009 한국데이터정보과학회지 Vol.20 No.5

        The bivariate data in clinical research fields often has two types of failure times, which are mark variable for the first failure time and the final failure time. This paper showed how to generate bootstrap data to get Bayesian estimation for the joint distribution of bivariate survival times. The observed data was generated by Frank's family and the fake date is simulated with the Gamma prior of survival time. The bootstrap data was obtained by combining the mimic data with the observed data and the simulated fake data from the observed data.

      • KCI우수등재

        Comparison study of SARIMA and ARGO models for in influenza epidemics prediction

        Jung, Jihoon,Lee, Sangyeol The Korean Data and Information Science Society 2016 한국데이터정보과학회지 Vol.27 No.4

        The big data analysis has received much attention from the researchers working in various fields because the big data has a great potential in detecting or predicting future events such as epidemic outbreaks and changes in stock prices. Reflecting the current popularity of big data analysis, many authors have proposed methods tracking influenza epidemics based on internet-based information. The recently proposed 'autoregressive model using Google (ARGO) model' (Yang et al., 2015) is one of those influenza tracking models that harness search queries from Google as well as the reports from the Centers for Disease Control (CDC), and appears to outperform the existing method such as 'Google Flu Trends (GFT)'. Although the ARGO predicts well the outbreaks of influenza, this study demonstrates that a classical seasonal autoregressive integrated moving average (SARIMA) model can outperform the ARGO. The SARIMA model incorporates more accurate seasonality of the past influenza activities and takes less input variables into account. Our findings show that the SARIMA model is a functional tool for monitoring influenza epidemics.

      • KCI우수등재

        Joint HGLM approach for repeated measures and survival data

        Ha, Il Do The Korean Data and Information Science Society 2016 한국데이터정보과학회지 Vol.27 No.4

        In clinical studies, different types of outcomes (e.g. repeated measures data and time-to-event data) for the same subject tend to be observed, and these data can be correlated. For example, a response variable of interest can be measured repeatedly over time on the same subject and at the same time, an event time representing a terminating event is also obtained. Joint modelling using a shared random effect is useful for analyzing these data. Inferences based on marginal likelihood may involve the evaluation of analytically intractable integrations over the random-effect distributions. In this paper we propose a joint HGLM approach for analyzing such outcomes using the HGLM (hierarchical generalized linear model) method based on h-likelihood (i.e. hierarchical likelihood), which avoids these integration itself. The proposed method has been demonstrated using various numerical studies.

      • KCI우수등재

        Designing Summary Tables for Mining Web Log Data

        Ahn, Jeong-Yong Korean Data and Information Science Society 2005 한국데이터정보과학회지 Vol.16 No.1

        In the Web, the data is generally gathered automatically by Web servers and collected in server or access logs. However, as users access larger and larger amounts of data, query response times to extract information inevitably get slower. A method to resolve this issue is the use of summary tables. In this short note, we design a prototype of summary tables that can efficiently extract information from Web log data. We also present the relative performance of the summary tables against a sampling technique and a method that uses raw data.

      • KCI우수등재

        A modified partial least squares regression for the analysis of gene expression data with survival information

        Lee, So-Yoon,Huh, Myung-Hoe,Park, Mira The Korean Data and Information Science Society 2014 한국데이터정보과학회지 Vol.25 No.5

        In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.

      • KCI등재후보

        Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

        Kim, Byung-Joo The Korean Data and Information Science Society 2003 한국데이터정보과학회지 Vol.14 No.2

        An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

      • KCI우수등재

        The research of new algorithm to improve prediction accuracy of recommender system in electronic commercey

        Kim, Sun-Ok The Korean Data and Information Science Society 2010 한국데이터정보과학회지 Vol.21 No.1

        In recommender systems which are used widely at e-commerce, collaborative filtering needs the information of user-ratings and neighbor user-ratings. These are an important value for recommendation in recommender systems. We investigate the in-formation of rating in NBCFA (neighbor Based Collaborative Filtering Algorithm), we suggest new algorithm that improve prediction accuracy of recommender system. After we analyze relations between two variable and Error Value (EV), we suggest new algorithm and apply it to fitted line. This fitted line uses Least Squares Method (LSM) in Exploratory Data Analysis (EDA). To compute the prediction value of new algorithm, the fitted line is applied to experimental data with fitted function. In order to confirm prediction accuracy of new algorithm, we applied new algorithm to increased sparsity data and total data. As a result of study, the prediction accuracy of recommender system in the new algorithm was more improved than current algorithm.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료