RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

        Lei Yong-Jun,Wu Hong-Xin Institute of Control 2006 International Journal of Control, Automation, and Vol.4 No.2

        A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.

      • SCIESCOPUSKCI등재

        Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

        Bevrani, Hassan,Hiyama, Takashi Institute of Control 2007 International Journal of Control, Automation, and Vol.5 No.2

        Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

      • SCIESCOPUSKCI등재

        Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

        Park, Jung-Soo,Jang, Gil-Soo,Son, Kwang-M. Institute of Control 2008 International Journal of Control, Automation, and Vol.6 No.4

        This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

      • SCIESCOPUSKCI등재

        Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

        Zhang, Yao-Xin,Cong, Shuang,Shang, Wei-Wei,Li, Ze-Xiang,Jiang, Shi-Long Institute of Control 2007 International Journal of Control, Automation, and Vol.5 No.5

        In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

      • SCIESCOPUSKCI등재

        Analysis of Control Conflict between UPFC Multiple Control Functions and Their Interaction Indicator

        Wang H. F.,Jazaeri M.,Cao Y. J. Institute of Control 2005 International Journal of Control, Automation, and Vol.3 No.S

        Interactions among multiple control functions of a UPFC installed in a power system have been observed in power system simulation and been reported in authors' previous publications [1,2]. This paper presents new analytical results about these observed interactions and concludes that they are due to the control conflict between the series and shunt part of the UPFC, which are connected through the internal common capacitor inside the UPFC. Investigation in the paper reveals, for the first time as far as the authors are aware of, that the linkage pattern of UPFC series and shunt part decides whether the control functions implemented by the UPFC series and shunt part conflict each other or not. This linkage pattern of UPFC series and shunt part can be described by the flow of active power through the UPFC at steady-state operation of the power system. Hence in order to predict the possible interactions among multiple control functions of the UPFC, an interaction indicator is proposed in the paper which is the direction and amount of active power flow through the internal link of the UPFC series and shunt part at steady-state operation of the power system. This proposed interaction indicator can be calculated from power system load flow solution without having to run simulation of the power system with UPFC controllers installed. By using the indicator, the interactions among multiple control functions of the UPFC caused by badly set controller's parameters are excluded. Therefore the indicator only identifies the possible existence of inherent control conflict of the UPFC.

      • SCIESCOPUSKCI등재

        Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

        Pothiya Saravuth,Ngamroo Issarachai,Runggeratigul Suwan,Tantaswadi Prinya Institute of Control 2006 International Journal of Control, Automation, and Vol.4 No.2

        This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

      • Composite Control for Inverted Pendulum System

        Kwon, Yo-Han,Kim, Beom-Soo,Lee, Sang-Yup,Lim, Myo-Taeg Institute of Control 2002 Transaction on control, automation and systems eng Vol.4 No.1

        A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and easier to implement. Experimental results are given to show the effectiveness of this controller.

      • SCIESCOPUSKCI등재

        Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

        Cho, Hyun-Cheol,Lee, Kwon-Soon Institute of Control 2008 International Journal of Control, Automation, and Vol.6 No.3

        We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

      • SCIESCOPUSKCI등재

        Design and Application of a Nonlinear Coordinated Excitation and TCPS Controller in Power Systems

        Hashmani Ashfaque Ahmed,Wang Youyi,Lie Tek Tjing Institute of Control 2005 International Journal of Control, Automation, and Vol.3 No.S

        This paper presents a new approach to Thyristor Controlled Phase Shifter (TCPS) control. In this paper we have proposed a nonlinear coordinated generator excitation and TCPS controller to enhance the transient stability of a power system. The proposed controller is able to control three main parameters affecting a.c. power transmission: namely excitation voltage, phase angle and reactance in a coordinated manner. The TCPS is located at the midpoint of the transmission line. A nonlinear feedback control law is proposed to linearize and decouple the power system. The design of the proposed controller is based on the local measurements only. Simulation results have been shown to demonstrate the effectiveness of the proposed controller for the enhancement of transient stability of the power system under a large sudden fault.

      • SCIESCOPUSKCI등재

        Design of Fractional Order Controller Based on Particle Swarm Optimization

        Cao, Jun-Yi,Cao, Bing-Gang Institute of Control 2006 International Journal of Control, Automation, and Vol.4 No.6

        An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼