RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Push-pull strategy in the regulation of postembryonic root development

        Choe, G.,Lee, J.Y. Current Biology, Ltd ; Elsevier Science Ltd 2017 Current opinion in plant biology Vol.35 No.-

        <P>Unlike animals, plants continue to grow throughout their lives. The stem cell niche, protected in meristems of shoots and roots, enables this process. In the root, stem cells produce precursors for highly organized cell types via asymmetric cell divisions. These precursors, which are 'transit-amplifying cells,' actively divide for several rounds before entering into differentiation programs. In this review, we highlight positive feedback regulation between shoot- and root-ward signals during the postembryonic root growth, which is reminiscent of a 'push-pull strategy' in business parlance. This property of molecular networks underlies the regulation of stem cells and their organizer, the 'quiescent center,' as well as of the signaling between stem cell niche, transit-amplifying cells, and beyond.</P>

      • Combining Suppression of Stemness with Lineage-Specific Induction Leads to Conversion of Pluripotent Cells into Functional Neurons

        Halder, D.,Chang, G.E.,De, D.,Cheong, E.,Kim, K.,Shin, I. Current Biology Ltd ; Elsevier Science Ltd 2015 Chemistry & biology Vol.22 No.11

        Sox2 is a key player in the maintenance of pluripotency and stemness, and thus inhibition of its function would abrogate the stemness of pluripotent cells and induce differentiation into several types of cells. Herein we describe a strategy that relies on a combination of Sox2 inhibition with lineage-specific induction to promote efficient and selective differentiation of pluripotent P19 cells into neurons. When P19 cells transduced with Skp protein, an inhibitor of Sox2, are incubated with a neurogenesis inducer, the cells are selectively converted into neurons that generate depolarization-induced sodium currents and action potentials. This finding indicates that the differentiated neurons are electrophysiologically active. Signaling pathway studies lead us to conclude that a combination of Skp with the neurogenesis inducer enhances neurogenesis in P19 cells by activating Wnt and Notch pathways. The present differentiation protocol could be valuable to selectively generate functionally active neurons from pluripotent cells.

      • Identification of a Peptidergic Pathway Critical to Satiety Responses in Drosophila

        Min, S.,Chae, H.S.,Jang, Y.H.,Choi, S.,Lee, S.,Jeong, Y.,Jones, Walton D.,Moon, S.,Kim, Y.J.,Chung, J. Current Biology Ltd ; Elsevier Science Ltd 2016 Current biology Vol.26 No.6

        <P>Although several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding-motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-offunction mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.</P>

      • Phytochrome-interacting factor from Arabidopsis to liverwort

        Lee, N.,Choi, G. Current Biology, Ltd ; Elsevier Science Ltd 2017 Current opinion in plant biology Vol.35 No.-

        <P>Phytochromes are red and far-red light photoreceptors that regulate the responses of plants to light throughout their life cycles. Phytochromes do this in part by inhibiting the function of a group of basic helix-loop-helix transcription factors called phytochrome-interacting factors (PIFs). Arabidopsis has eight PIFs that function sometimes redundantly and sometimes distinctively depending on their expression patterns and protein stability, as well as on variations in the promoters they target in vivo. PIF-like proteins exist in other seed plants and non-vascular plants where they also regulate light responses. The mechanism by which phytochrome regulates light responses by promoting the degradation of the PIFs is conserved in liverwort, suggesting it must have evolved some time before the last common ancestor shared by seed plants and non-vascular plants.</P>

      • Cytokinins Control Endocycle Onset by Promoting the Expression of an APC/C Activator in Arabidopsis Roots

        Takahashi, N.,Kajihara, T.,Okamura, C.,Kim, Y.,Katagiri, Y.,Okushima, Y.,Matsunaga, S.,Hwang, I.,Umeda, M. Current Biology Ltd ; Elsevier Science Ltd 2013 Current biology Vol.23 No.18

        Plant roots respond to various internal and external signals and adjust themselves to changes of environmental conditions. In the root meristem, stem cells produce daughter cells that continue to divide several times. When these latter cells reach the transition zone, they stop dividing and enter the endocycle, a modified cell cycle in which DNA replication is repeated without mitosis or cytokinesis. The resultant DNA polyploidization, named endoreduplication, is usually associated with an increase of nuclear and cell volume and with cell differentiation [1-4]. At the transition zone, cytokinin signaling activates two transcription factors, type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12, and induces SHY2/IAA3, a member of the Aux/IAA family of auxin signaling repressors. This inhibits auxin signaling and reduces the expression of auxin efflux carriers, resulting in cell division arrest [5]. Such counteracting actions of two hormones are assumed to determine meristem size. However, it remains unknown whether cytokinins additionally control meristem size through an auxin-independent pathway. Here we show that, in Arabidopsis, the cytokinin-activated ARR2 directly upregulates the expression of CCS52A1, which encodes an activator of an E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C) [6], thereby promoting the onset of the endocycle and restricting meristem size. Our genetic data revealed that CCS52A1 function is independent of SHY2-mediated control of auxin signaling, indicating that downregulation of auxin signaling and APC/C-mediated degradation of cell-cycle regulators cooperatively promote endocycle onset, and thus fine tune root growth.

      • SCISCIESCOPUS

        Kinesin-12 Kif15 Targets Kinetochore Fibers through an Intrinsic Two-Step Mechanism

        Sturgill, Emma G.,Das, D.,Takizawa, Y.,Shin, Y.,Collier, Scott E.,Ohi, Melanie D.,Hwang, W.,Lang, Matthew J.,Ohi, R. Current Biology Ltd ; Elsevier Science Ltd 2014 Current biology Vol.24 No.19

        Proteins that recognize and act on specific subsets of microtubules (MTs) enable the varied functions of the MT cytoskeleton. We recently discovered that Kif15 localizes exclusively to kinetochore fibers (K-fibers) [1, 2] or bundles of kinetochore-MTs within the mitotic spindle. It is currently speculated that the MT-associated protein TPX2 loads Kif15 onto spindle MTs [3-5], but this model has not been rigorously tested. Here, we show that Kif15 accumulates on MT bundles as a consequence of two inherent biochemical properties. First, Kif15 is self-repressed by its C terminus. Second, Kif15 harbors a nonmotor MT-binding site, enabling dimeric Kif15 to crosslink and slide MTs. Two-MT binding activates Kif15, resulting in its accumulation on and motility within MT bundles but not on individual MTs. We propose that Kif15 targets K-fibers via an intrinsic two-step mechanism involving molecular unfolding and two-MT binding. This work challenges the current model of Kif15 regulation and provides the first account of a kinesin that specifically recognizes a higher-order MT array.

      • SCISCIESCOPUS

        Inhibition of Respiration Extends C. elegans Life Span via Reactive Oxygen Species that Increase HIF-1 Activity

        Lee, S.J.,Hwang, A.B.,Kenyon, C. Current Biology Ltd ; Elsevier Science Ltd 2010 Current biology Vol.20 No.23

        A mild inhibition of mitochondrial respiration extends the life span of many organisms, including yeast, worms, flies, and mice [1-10], but the underlying mechanism is unknown. One environmental condition that reduces rates of respiration is hypoxia (low oxygen). Thus, it is possible that mechanisms that sense oxygen play a role in the longevity response to reduced respiration. The hypoxia-inducible factor HIF-1 is a highly conserved transcription factor that activates genes that promote survival during hypoxia [11, 12]. In this study, we show that inhibition of respiration in C. elegans can promote longevity by activating HIF-1. Through genome-wide screening, we found that RNA interference (RNAi) knockdown of many genes encoding respiratory-chain components induced hif-1-dependent transcription. Moreover, HIF-1 was required for the extended life spans of clk-1 and isp-1 mutants, which have reduced rates of respiration [1, 4, 13]. Inhibiting respiration appears to activate HIF-1 by elevating the level of reactive oxygen species (ROS). We found that ROS are increased in respiration mutants and that mild increases in ROS can stimulate HIF-1 to activate gene expression and promote longevity. In this way, HIF-1 appears to link respiratory stress in the mitochondria to a nuclear transcriptional response that promotes longevity.

      • Food metabolomics: from farm to human

        Kim, S.,Kim, J.,Yun, E.J.,Kim, K.H. Current Biology ; Elsevier Science Ltd 2016 Current opinion in biotechnology Vol.37 No.-

        Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans.

      • SCISCIESCOPUS
      • Regulatory network of NAC transcription factors in leaf senescence

        Kim, H.J.,Nam, H.G.,Lim, P.O. Current Biology, Ltd ; Elsevier Science Ltd 2016 Current opinion in plant biology Vol.33 No.-

        <P>Leaf senescence is finely tuned by many regulatory factors such as NAC (NAM/ATAF/CUC)) transcription factors (TFs). NACs comprise one of the largest families of TFs in plants, many of which are differentially regulated during leaf senescence and play a major role in leaf senescence. Recent studies advanced our understanding on the structural and functional features of NAC TFs including target binding specificities of the N-terminal DNA binding domain and dynamic interaction of the C-terminal intrinsically disordered domain with other proteins. NAC TFs control other NACs and also interact with NACs or other TFs to fine-tune the expression of target genes. These studies clearly demonstrated the highly complex characteristics of NAC regulatory networks, which are dynamically regulated temporally and spatially and effectively integrate multiple developmental and environmental signals.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼