RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Oscillator construction of spectra of pp-wave superalgebras in eleven dimensions

        Fernando, Sudarshan,,naydin, Murat,Hyun, Seungjoon Elsevier 2005 Nuclear physics, B Vol.727 No.3

        <P><B>Abstract</B></P><P>After reviewing the oscillator realization of the symmetry superalgebra of the BMN matrix model on its maximally supersymmetric plane-wave background and the construction of its zero-mode spectrum, we study a large number of non-maximally supersymmetric pp-wave algebras in eleven dimensions which are obtained by various restrictions from the maximally supersymmetric case (BMN model). We also show how to obtain their zero-mode spectra, which we explicitly construct in some chosen examples. Except for some ‘exotic’ or degenerate special cases, we believe our study covers all possible interesting pp-wave superalgebras of this kind in eleven dimensions.</P>

      • KCI등재

        Construction stage analysis of fatih sultan mehmet suspension bridge

        Murat Günaydin,Süleyman Adanur,Ahmet Can Altunisik,Baris Sevim 국제구조공학회 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.42 No.4

        In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

      • KCI등재

        Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

        Murat Günaydin,Süleyman Adanur,Ahmet Can Altunişik,Barış Sevım,Emel Türker 국제구조공학회 2014 Steel and Composite Structures, An International J Vol.17 No.4

        In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.

      • KCI등재

        Time Dependent Changing of Dynamic Characteristics of Laboratory Arch Dam Model

        Ahmet Can Altuni ik,Bar Sev m,Alemdar Bayraktar,Süleyman Adanur,Murat Günaydin 대한토목학회 2015 KSCE JOURNAL OF CIVIL ENGINEERING Vol.19 No.4

        This paper investigates the time dependent changing of dynamic characteristics of laboratory arch dam models using ambient vibration test. For this aim, a prototype arch dam-reservoir-foundation model is constructed in laboratory conditions. The first experimental measurement tests are performed after the poured concrete aged for 10 months for some damage scenarios such as undamaged, minor-damaged and severely damaged of dam body in November 2009. To extract the experimental dynamic characteristics such as natural frequencies, mode shapes and damping ratios, a small impact effect is used as a source of ambient vibrations. Experimental measurements tests are repeated using same excitations considering severely damaged conditions with and without reservoir water in February 2014, and the dynamic characteristics are obtained, experimentally. Enhanced Frequency Domain Decomposition Method in the frequency domain is used to extract the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics are compared with each other and time effects are investigated in detail. Maximum differences between the natural frequencies obtained as 15.36% and 14.38% in the third mode for empty and full reservoir conditions, respectively. It is thought that the increase of the natural frequencies is resulted from gaining of rigidity of the concrete, ageing, temperature and different environmental effects.

      • KCI등재

        Experimental Study of the Effect of Different Insulation Schemes on Fire Performance of FRP Strengthened Concrete: FIRECOAT and REALROCK

        Ahmet Can Altunişik,Yunus Emrahan Akbulut,Süleyman Adanur,Murat Günaydin,Sara Mostofi,Ayman Mosallam 한국콘크리트학회 2024 International Journal of Concrete Structures and M Vol.18 No.1

        The past two decades have witnessed rapid advances in the use of fiber-reinforced polymer (FRP) composites in different engineering fields. Advantages such as high strength-to-weight ratio, corrosion resistance, and tailority have led to immense interest in the use of FRPs in wide spectrum repair and strengthening of structures. Despite their many advantages, FRPs are highly sensitive to high temperatures, which pose a major concern for fire potential structures such as buildings. Applying proper thermal insulation can enhance the fire performance of FRP and reduce the possible fire damage to the FRP strengthened element. This study set out to experimentally investigate the effectiveness of two insulation systems, “FIRECOAT” and “REALROCK” on fire performance of CFRP and GFRP strengthened concrete specimens. Various configurations and exposure durations were considered to evaluate the effectiveness of insulating materials. To perform the experiments, cylindrical concrete specimens were fabricated and strengthened using CFRP or GFRP. After insulating the specimens, they were exposed to a standard fire curve for two different durations of 30 and 60 min. The results indicate that less than 30 min of fire, both insulation systems can provide the required protection. During long exposure duration of 60 min, only REALROCK can provide the required thermal resistance for FRP-strengthened concrete. Within the tested materials, Fire Set 60 outperformed other insulating materials. It was observed that implementing Fire Set 60 in the innermost layer of thermal insulations has crucial importance in preventing the fire induced reductions in strength of FRP-strengthened concrete elements.

      • KCI등재

        Sensitivity-Based Model Updating of Building Frames using Modal Test Data

        Ahmet Can Altunişik,Olguhan Şevket Karahasan,Ali Fuat Genç,Fatih Yesevi Okur,Murat Günaydin,Süleyman Adanur 대한토목학회 2018 KSCE Journal of Civil Engineering Vol.22 No.10

        Model updating is of significant importance in the actual analyses of real structures. The differences between experimental and numerical dynamic characteristics can be minimized by means of this procedure. This procedure can be carried out using two approaches, namely, the manual model updating and the global or local automated model updating. The local model updating is a convenient tool for all kind of structures capable of minimizing the differences mentioned previously nearly to zero and also of identifying the damage locations and monitoring structural integrity. In this way, current realistic behavior of structures can be represented by updated finite element models. This paper describes a Reinforced Concrete (RC) frame model, its ambient vibration testing, finite element modeling and sensitivity-based automated model updating. The RC frame is of ½ geometric scale with two floors and two bays in the longitudinal direction. It was built and then subjected to ambient vibration tests to determine experimentally their dynamic characteristics. Additionally, the finite element computer program ANSYS was used to determine its initial numerical dynamic characteristics. The experimental and numerical results were compared resulting in maximum differences of 38.38% between them. To minimize these differences, the finite element model was updated using the global and local automated approach using a sensitivity-based analyses with some uncertain parameters. The differences were finally reduced to 4.4% and 0.21% by the global and the local automated model updatings, respectively. It is concluded that sensitivity-based automated updating is a very effective procedure to obtain the updated finite element model which can reflect the current behavior of a structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼