RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Anti‐inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide‐stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase‐1 expression

        Jung, Ji&#x2010,Sun,Shin, Jin A.,Park, Eun&#x2010,Mi,Lee, Jung&#x2010,Eun,Kang, Young‐,Sook,Min, Sung&#x2010,Won,Kim, Dong&#x2010,Hyun,Hyun, Jin&#x2010,Won,Shin, Chan&#x2010,Young,Kim, Hee&#x201 Blackwell Publishing Ltd 2010 Journal of Neurochemistry Vol.115 No.6

        <P> <I>J. Neurochem.</I> (2010) <B>115,</B> 1668–1680.</P><P><B>Abstract</B></P><P>Microglia activation plays a pivotal role in neurodegenerative diseases, and thus controlling microglial activation has been suggested as a promising therapeutic strategy for neurodegenerative diseases. In the present study, we showed that ginsenoside Rh1 inhibited inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐inflammatory cytokine expression in lipopolysaccharide (LPS)‐stimulated microglia, while Rh1 increased anti‐inflammatory IL‐10 and hemeoxygenase‐1 (HO‐1) expression. Suppression of microglial activation by Rh1 was also observed in the mouse brain following treatment with LPS. Subsequent mechanistic studies revealed that Rh1 inhibited LPS‐induced MAPK phosphorylation and nuclear factor‐κB (NF‐κB)‐mediated transcription without affecting NF‐κB DNA binding. As the increase of pCREB (cAMP responsive element‐binding protein) is known to result in suppression of NF‐κB‐mediated transcription, we examined whether Rh1 increased pCREB levels. As expected, Rh1 increased pCREB, which was shown to be related to the anti‐inflammatory effect of Rh1 because pre‐treatment with protein kinase A inhibitors attenuated the Rh1‐mediated inhibition of nitric oxide production and the up‐regulation of IL‐10 and HO‐1. Furthermore, treatment of HO‐1 shRNA attenuated Rh1‐mediated inhibition of nitric oxide and reactive oxygen species production. Through this study, we have demonstrated that protein kinase A and its downstream effector, HO‐1, play a critical role in the anti‐inflammatory mechanism of Rh1 by modulating pro‐ and anti‐inflammatory molecules in activated microglia.</P>

      • The deubiquitinating enzyme, ubiquitin‐specific peptidase 50, regulates inflammasome activation by targeting the ASC adaptor protein

        Lee, Jae Young,Seo, Dongyeob,You, Jiyeon,Chung, Sehee,Park, Jin Seok,Lee, Ji&#x2010,Hyung,Jung, Su Myung,Lee, Youn Sook,Park, Seok Hee John Wiley and Sons Inc. 2017 FEBS letters Vol.591 No.3

        <P>NOD‐like receptor family protein 3 (NLRP3)‐mediated inflammasome activation promotes caspase‐1‐dependent production of interleukin‐1β (IL‐1β) and requires the adaptor protein ASC. Compared with the priming and activation mechanisms of the inflammasome signaling pathway, post‐translational ubiquitination/deubiquitination mechanisms controlling inflammasome activation have not been clearly addressed. We here demonstrate that the deubiquitinating enzyme USP50 binds to the ASC protein and subsequently regulates the inflammasome signaling pathway by deubiquitinating the lysine 63‐linked polyubiquitination of ASC. USP50 knockdown in human THP‐1 cells and mouse bone marrow‐derived macrophages shows a significant decrease in procaspase‐1 cleavage, resulting in a reduced secretion of IL‐1β and interleukin‐18 (IL‐18) upon treatment with NLRP3 stimuli and a reduction in ASC speck formation and oligomerization. Thus, we elucidate a novel regulatory mechanism of the inflammasome signaling pathway mediated by the USP50 deubiquitinating enzyme.</P>

      • SCISCIESCOPUS

        2′‐Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation

        Yoon, Yae Jin,Kim, Young‐,Hwan,Lee, Yu&#x2010,Jin,Choi, Jiyeon,Kim, Cheol&#x2010,Hee,Han, Dong Cho,Kwon, Byoung‐,Mog John Wiley and Sons Inc. 2019 CANCER SCIENCE Vol.110 No.1

        <P>Inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling pathway is a novel therapeutic strategy to treat human cancers with constitutively active STAT3. During the screening of natural products to find STAT3 inhibitors, we identified 2′‐hydroxycinnamaldehyde (HCA) as a STAT3 inhibitor, which was isolated from the stem bark of <I>Cinnamomum cassia</I>. In this study, we found that HCA inhibited constitutive and inducible STAT3 activation in STAT3‐activated DU145 prostate cancer cells. HCA selectively inhibited the STAT3 activity by direct binding to STAT3, which was confirmed by biochemical methods, including a pull‐down assay with biotin‐conjugated HCA, a drug affinity responsive target stability (DARTS) experiment and a cellular thermal shift assay (CETSA). HCA inhibited STAT3 phosphorylation at the tyrosine 705 residue, dimer formation, and nuclear translocation in DU145 cells, which led to a downregulation of STAT3 target genes. The downregulation of cell cycle progression and antiapoptosis‐related gene expression by HCA induced the accumulation of cells in the G0/G1 phase of the cell cycle and then induced apoptosis. We also found that reactive oxygen species (ROS) were involved in the HCA‐induced inhibition of STAT3 activation and cell proliferation because the suppressed p‐STAT3 level was rescued by glutathione or N‐acetyl‐L‐cysteine treatment, which are general ROS inhibitors. These results suggest that HCA could be a potent anticancer agent targeting STAT3‐activated tumor cells.</P>

      • Permanent Chemotherapy‐Induced Alopecia in Patients with Breast Cancer: A 3‐Year Prospective Cohort Study

        Kang, Danbee,Kim, Im&#x2010,Ryung,Choi, Eun&#x2010,Kyung,Im, Young Hyuck,Park, Yeon Hee,Ahn, Jin Seok,Lee, Jeong Eon,Nam, Seok Jin,Lee, Hae Kwang,Park, Ji&#x2010,Hye,Lee, Dong&#x2010,Youn,Lacouture, M AlphaMed Press 2019 The oncologist Vol.24 No.3

        <P>Chemotherapy‐induced alopecia is (CIA) considered temporary; however, some patients report persistent alopecia several years after chemotherapy. Long‐term prospective data on the incidence and impact of permanent CIA is scarce. This article reports the results of a study conducted to estimate the long‐term incidence of persistent CIA in a cohort of breast cancer patients with measurements of hair volume and density before and after chemotherapy.</P><P><B>Background.</B></P><P>Although chemotherapy‐induced alopecia (CIA) is considered temporary, some patients report persistent alopecia several years after chemotherapy. There is, however, a paucity of long‐term prospective data on the incidence and impact of permanent CIA (PCIA). The objective of our study was to estimate the long‐term incidence of PCIA in a cohort of patients with breast cancer whose hair volume and density were measured prior to chemotherapy and who were followed for 3 years after chemotherapy.</P><P><B>Materials and Methods.</B></P><P>Prospective cohort study of consecutive patients ≥18 years of age with postoperative diagnosis of stage I–III breast cancer expected to receive adjuvant chemotherapy at the outpatient breast cancer clinic at the Samsung Medical Center in Seoul, Korea, from February 2012 to July 2013 (<I>n</I> = 61). Objective hair density and thickness were measured using a noninvasive bioengineering device.</P><P><B>Results.</B></P><P>The proportion of participants who had PCIA at 6 months and 3 years was 39.5% and 42.3%, respectively. PCIA was characterized in most patients by incomplete hair regrowth. Patients who received a taxane‐based regimen were more likely to experience PCIA compared with patients with other types of chemotherapy. At a 3‐year follow‐up, hair thinning was the most common problem reported by study participants (75.0%), followed by reduced hair volume (53.9%), hair loss (34.6%), and gray hair (34.6%).</P><P><B>Conclusion.</B></P><P>PCIA is a common adverse event of breast cancer adjuvant cytotoxic chemotherapy. Clinicians should be aware of this distressing adverse event and develop supportive care strategies to counsel patients and minimize its impact on quality of life.</P><P><B>Implications for Practice.</B></P><P>Knowledge of permanent chemotherapy‐induced alopecia, an under‐reported adverse event, should lead to optimized pretherapy counseling, anticipatory coping techniques, and potential therapeutic strategies for this sequela of treatment.</P>

      • SCISCIESCOPUS

        22‐ S ‐Hydroxycholesterol protects against ethanol‐induced liver injury by blocking the auto/paracrine activation of MCP ‐1 mediated by LXRα

        Na, Tae&#x2010,Young,Han, Young‐,Hyun,Ka, Na&#x2010,Lee,Park, Han&#x2010,Su,Kang, Yun Pyo,Kwon, Sung Won,Lee, Byung&#x2010,Hoon,Lee, Mi&#x2010,Ock John WileySons, Ltd 2015 The Journal of pathology Vol.235 No.5

        <P><B>Abstract</B></P><P>Chronic ethanol consumption causes hepatic steatosis and inflammation, which are associated with liver hypoxia. Monocyte chemoattractant protein‐1 (MCP‐1) is a hypoxia response factor that determines recruitment and activation of monocytes to the site of tissue injury. The level of MCP‐1 is elevated in the serum and liver of patients with alcoholic liver disease (ALD); however, the molecular details regarding the regulation of MCP‐1 expression are not yet understood completely. Here, we show the role of liver X receptor α (LXRα) in the regulation of MCP‐1 expression during the development of ethanol‐induced fatty liver injury, using an antagonist, 22‐S‐hydroxycholesterol (22‐S‐HC). First, administration of 22‐S‐HC attenuated the signs of liver injury with decreased levels of MCP‐1 and its receptor CCR2 in ethanol‐fed mice. Second, hypoxic conditions or treatment with the LXRα agonist GW3965 significantly induced the expression of MCP‐1, which was completely blocked by treatment with 22‐S‐HC or infection by shLXRα lentivirus in the primary hepatocytes. Third, over‐expression of LXRα or GW3965 treatment increased MCP‐1 promoter activity by increasing the binding of hypoxia‐inducible factor‐1α to the hypoxia response elements, together with LXRα. Finally, treatment with recombinant MCP‐1 increased the level of expression of LXRα and LXRα‐dependent lipid droplet accumulation in both hepatocytes and Kupffer cells. These data show that LXRα and its ligand‐induced up‐regulation of MCP‐1 and MCP‐1‐induced LXRα‐dependent lipogenesis play a key role in the autocrine and paracrine activation of MCP‐1 in the pathogenesis of alcoholic fatty liver disease, and that this activation may provide a promising new target for ALD therapy.Copyright © 2014 The Authors. <I>The Journal of Pathology</I> published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.</P>

      • Development of real‐time motion verification system using in‐room optical images for respiratory‐gated radiotherapy

        Park, Yang&#x2010,Kyun,Son, Tae&#x2010,geun,Kim, Hwiyoung,Lee, Jaegi,Sung, Wonmo,Kim, Il Han,Lee, Kunwoo,Bang, Young‐,bong,Ye, Sung&#x2010,Joon John Wiley and Sons Inc. 2013 Journal of applied clinical medical physics Vol.14 No.5

        <P>Phase‐based respiratory‐gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real‐time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real‐time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase‐resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real‐time phase information extracted from RPM was delivered to RMVS via in‐house network software. Thus, the real‐time anterior‐posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase‐matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase‐based gating treatments.</P><P>PACS number: 87.55.Qr</P>

      • PD‐L1 expression in <i>ROS1</i> ‐rearranged non‐small cell lung cancer: A study using simultaneous genotypic screening of <i>EGFR</i> , <i>ALK</i> , and <i>ROS1</i>

        Lee, Jongmin,Park, Chan Kwon,Yoon, Hyoung‐,Kyu,Sa, Young Jo,Woo, In Sook,Kim, Hyo Rim,Kim, Sue Youn,Kim, Tae&#x2010,Jung Wiley-Blackwells 2019 Thoracic cancer Vol.10 No.1

        <P><B>Background</B></P><P>The aim of the current study was to investigate the prevalence and clinicopathologic characteristics of <I>ROS1</I>‐rearranged non‐small cell lung cancer (NSCLC) in routine genotypic screening in conjunction with the study of PD‐L1 expression, a biomarker for first‐line treatment decisions.</P><P><B>Methods</B></P><P>Reflex simultaneous genotypic screening for <I>EGFR</I> by peptide nucleic acid clamping, and <I>ALK</I> and <I>ROS1</I> by fluorescence in situ hybridization (FISH) was performed on consecutive NSCLC cases at the time of initial pathologic diagnosis. We evaluated genetic aberrations, clinicopathologic characteristics, and PD‐L1 tumor proportion score (TPS) using a PD‐L1 22C3 assay kit.</P><P><B>Results</B></P><P>In 407 consecutive NSCLC patients, simultaneous genotyping identified 14 (3.4%) <I>ROS1</I> and 19 (4.7%) <I>ALK</I> rearrangements, as well as 106 (26%) <I>EGFR</I> mutations. These mutations were mutually exclusive and were found in patients with similar clinical features, including younger age, a prevalence in women, adenocarcinoma, and advanced stage. The PD‐L1 assay was performed on 130 consecutive NSCLC samples. High PD‐L1 expression (TPS ≥ 50%) was observed in 29 (22.3%) tumors. PD‐L1 expression (TPS ≥ 1%) was significantly associated with wild type <I>EGFR</I>, while <I>ROS1</I> rearrangement was associated with high PD‐L1 expression. Of the 14 cases with <I>ROS1</I> rearrangement, 12 (85.7%) showed PD‐L1 expression and 5 (35.7%) showed high PD‐L1 expression.</P><P><B>Conclusion</B></P><P>In the largest consecutive routine Asian NSCLC cohort analyzed to date, we found that high PD‐L1 expression frequently overlapped with <I>ROS1</I> rearrangement, while it negatively correlated with <I>EGFR</I> mutations.</P>

      • Patient‐specific 17‐segment myocardial modeling on a bull's‐eye map

        Jung, Joonho,Kim, Young‐,Hak,Kim, Namkug,Yang, Dong Hyun unknown 2016 Journal of applied clinical medical physics Vol.17 No.5

        <P>The purpose of this study was to develop and validate cardiac computed tomography (CT) quantitative analysis software with a patient‐specific, 17‐segment myocardial model that uses electrocardiogram (ECG)‐gated cardiac CT images to differentiate between normal controls and severe aortic stenosis (AS) patients. ECG‐gated cardiac CT images from 35 normal controls and 144 AS patients were semiautomatically segmented to create a patient‐specific, 17‐segment myocardial model. Two experts then manually determined the anterior and posterior interventricular grooves to be boundaries between the 1st and 2nd segments and between the 3rd and 4th segments, respectively, to correct the model. Each segment was automatically identified as follows. The outer angle of two boundaries was divided to differentiate the 1st, 4th, 5th, and 6th segments in the basal plane, whereas the inner angle divided the 2nd and 3rd segments. The segments of the midplane were similarly divided. Segmental area distributions were quantitatively evaluated on the bull's‐eye map on the basis of the morphological boundaries by measuring the area of each segment. Segmental areas of severe AS patients and normal controls were significantly different (t‐test, all p‐values<0.011) in the proposed model because the septal regions of the severe AS patients were smaller than those of normal controls and the difference was enough to divide the two groups. The capabilities of the 2D segmental areas (p<0.011) may be equivalent to those of 3D segmental analysis (all p‐values<0.001) for differentiating the two groups (t‐test, all p‐values<0.001). The proposed method is superior to the conventional 17‐segment in relation to reflection of patient‐specific morphological variation and allows to obtain a more precise mapping between segments and the AHA recommended nomenclature. It can be used to differentiate severer AS patients and normal controls and also helps to understand the left ventricular morphology at a glance.</P><P>PACS number(s): 87.57.N‐, 87.57.R‐, 87.57.qp</P>

      • Down‐regulation of <i>GIGANTEA</i> ‐ <i>like</i> genes increases plant growth and salt stress tolerance in poplar

        Ke, Qingbo,Kim, Ho Soo,Wang, Zhi,Ji, Chang Yoon,Jeong, Jae Cheol,Lee, Haeng&#x2010,Soon,Choi, Young‐,Im,Xu, Bingcheng,Deng, Xiping,Yun, Dae&#x2010,Jin,Kwak, Sang&#x2010,Soo John Wiley and Sons Inc. 2017 Plant biotechnology journal Vol.15 No.3

        <P><B>Summary</B></P><P>The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in <I>Arabidopsis</I>. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three <I>GI‐like</I> genes (<I>PagGIa</I>,<I> PagGIb</I> and <I>PagGIc)</I> from poplar (<I>Populus alba × Populus glandulosa</I>). <I>PagGIs</I> are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long‐day conditions. Overexpressing <I>PagGIs</I> in wild‐type (WT) <I>Arabidopsis</I> induced early flowering and salt sensitivity, while overexpressing <I>PagGIs</I> in the <I>gi‐2</I> mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs‐PagSOS2 complexes inhibited PagSOS2‐regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down‐regulation of <I>PagGIs</I> by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of <I>Arabidopsis GI</I> are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt‐tolerant trees for sustainable development on marginal lands worldwide.</P>

      • SCISCIESCOPUS

        3′‐Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis

        Kang, Li&#x2010,Jung,Kwon, Eun&#x2010,Soo,Lee, Kwang Min,Cho, Chanmi,Lee, Jae&#x2010,In,Ryu, Young Bae,Youm, Tae Hyun,Jeon, Jimin,Cho, Mi Ra,Jeong, Seon&#x2010,Yong,Lee, Sang&#x2010,Rae,Kim, Wook,Yang John Wiley and Sons Inc. 2018 British journal of pharmacology Vol.175 No.23

        <P><B>Background and Purpose</B></P><P>3′‐Sialyllactose (3′‐SL) is a safe compound that is present in high levels in human milk. Although it has anti‐inflammatory properties and supports immune homeostasis, its effect on collagen‐induced arthritis (CIA) is unknown. In this study, we investigated the prophylactic and therapeutic effect of 3′‐SL on the progression of rheumatoid arthritis (RA) in <I>in vitro</I> and <I>in vivo</I> models.</P><P><B>Experimental Approach</B></P><P>The anti‐arthritic effect of 3′‐SL was analysed with fibroblast‐like synoviocytes <I>in vitro</I> and an <I>in vivo</I> mouse model of CIA. RT‐PCR, Western blotting and ELISA were performed to evaluate its effects <I>in vitro</I>. Histological analysis of ankle and knee joints of mice with CIA was performed using immunohistochemistry, as well as safranin‐O and haematoxylin staining.</P><P><B>Key Results</B></P><P>3′‐SL markedly alleviated the severity of CIA in the mice by reducing paw swelling, clinical scores, incidence rate, serum levels of inflammatory cytokines and autoantibody production. Moreover, 3′‐SL reduced synovitis and pannus formation and suppressed cartilage destruction by blocking secretion of chemokines, pro‐inflammatory cytokines, https://en.wikipedia.org/wiki/Matrix_metalloproteinases and osteoclastogenesis <I>via</I> NF‐κB signalling. Notably, phosphorylation of p65, which is a key protein in the NF‐κB signalling pathway, was totally blocked by 3′‐SL in the RA models.</P><P><B>Conclusions and Implications</B></P><P>3′‐SL ameliorated pathogenesis of CIA by suppressing catabolic factor expression, proliferation of inflammatory immune cells and osteoclastogenesis. These effects were mediated <I>via</I> blockade of the NF‐κB signalling pathway. Therefore, 3′‐SL exerted prophylactic and therapeutic effects and could be a novel therapeutic agent for the treatment of RA.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼