RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Compressive behavior of profiled double skin composite wall

        Ying Qin,Yong-Wei Li,Yu-Sen Su,Xu-Zhao Lan,Yuan-De Wu,Xiang-Yu Wang 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.30 No.5

        Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

      • KCI등재

        Structural behavior of the stiffened double-skin profiled composite walls under compression

        Ying Qin,Yong-Wei Li,Xu-Zhao Lan,Yu-Sen Su,Xiang-Yu Wang,Yuan-De Wu 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.31 No.1

        Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

      • Experimental and numerical investigation on post-earthquake fire behaviour of the circular concrete-filled steel tube columns

        Yu-Hang Wang,Qi Tang,Mei-Ni Su,Ji-Ke Tan,Wei-Yong Wang,Yong-Sen Lan,Xiao-Wei Deng,Yong-Tao Bai,Wei Luo,Xiao-Hua Li,Jiu-Lin Bai 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.38 No.1

        Post-earthquake fire is a common disaster which causes serious safety issues to infrastructures. This study aims to investigate the residual loading capacities of circular concrete-filled steel tube (CFST) columns under post-earthquake fire experimentally and numerically. The experimental programme contains two loading steps - pre-damage cyclic loading at room temperature and transient state tests with constant compression loads. Three finite element models are developed and validated against the test results. Upon validation, a total of 48 numerical results were generated in the parametric study to investigate the effects of thickness and strengths of steel tube, axial compression ratio and damage degree on the fire resistance of circular CFST columns. Based on the analysis on experimental and numerical results, the loading mechanism of circular CFST columns is discussed. A design method is proposed for the prediction of fire resistance time under different seismic pre-damage and compression loads. The predictions by the new method is compared with the newly generated experimental and numerical results and is found to be accurate and consistent with the mean value close to the unity and a coefficient of variation around 1%.

      연관 검색어 추천

      활용도 높은 자료

      이 검색어로 많이 본 자료

      해외이동버튼