RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Modeling Study of the Characteristics and Mechanism of the Westward Coastal Current during Summer in the Northwestern South China Sea

        Yang Ding,Xianwen Bao,Zhigang Yao,Cong Zhang,Kai Wan,Min Bao,Ruixiang Li,Maochong Shi 한국해양과학기술원 2017 Ocean science journal Vol.52 No.1

        The characteristics and dynamical mechanism of summer-time coastal current over the North South China Sea shelf have been investigated based on a high resolution unstructuredgrid finite volume community ocean model (FVCOM). Modeldata comparison demonstrates that the model describes and explains well the coastal dynamics over the North South China Sea shelf. The coastal current on the North South China Sea shelf is greatly influenced by monsoon and the freshwater discharge of the Pearl River. Strong southwesterly wind drives the coastal current northeastward. However, under weak southwest monsoon, the coastal current west of the Pearl River estuary (PRE) advects toward the southwest, and splits into two parts when reaching east of the Qiongzhou Strait, with one branch entering the Gulf of Tonkin through the Qiongzhou Strait, transporting low salinity water into the Gulf of Tonkin, and the other part flows cyclonic and interacts with the northeastward current around southeast of Hainan Island, forming a cyclonic eddy east of the Qiongzhou Strait. A variety of model experiments focused on freshwater discharge, wind forcing, tidal rectification, and stratification are performed to study the physical mechanism of the southwestward coastal current which is usually against the summer wind. Process-oriented experiment results indicate that the southwest monsoon and freshwater discharge are important factors influencing the formation of southwestward coastal current during summer.

      • KCI등재

        The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

        Kai Lu,Min Zhang,Ran Yang,Min Zhang,Qinjun Guo,Kwang-Hyun Baek,Hou-Juan Xu 한국식물병리학회 2019 Plant Pathology Journal Vol.35 No.2

        Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ΔAbSte7 mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ΔAbSte7 mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, β-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

      • KCI등재

        Degradation kinetics of vitamins in premixes for pig: effects of choline, high concentrations of copper and zinc, and storage time

        Yang Pan,Wang Hua Kai,Zhu Min,Li Long Xian,Ma Yong Xi 아세아·태평양축산학회 2021 Animal Bioscience Vol.34 No.4

        Objective: The present work was undertaken to evaluate the effects of storage time, choline chloride, and high concentrations of Cu and Zn on the kinetic behavior of vitamin degradation during storage in two vitamin premixes and four vitamin-trace mineral (VTM) premixes. Methods: Two vitamin premixes (with or without 160,000 mg/kg of choline) were stored at 25°C and 60% humidity. Besides, four VTM premixes were used to evaluate the effects of choline (0 vs 40,000 mg/kg) and trace minerals (low CuSO4+ZnO vs high CuSO4+ZnO) on vitamin stability in VTM premixes stored in room, and the VTM premixes were stored in room temperature at 22°C. Subsamples from each vitamin and VTM premix were collected at 0, 1, 2, 3, 6, and 12 months. The retention of vitamin A (VA), vitamin D3 (VD3), vitamin E (VE), vitamin K3 (VK3), vitamin B1 (VB1), vitamin B2 (VB2), vitamin B3 (VB3), vitamin B5 (VB5), and vitamin B6 (VB6) in vitamin premixes and VTM premixes during storage was determined. The stability of vitamins in vitamin premixes and VTM premixes was determined and reported as the residual vitamin activity (% of initial) at each sampling point. Results: The effect of choline on VK3 retention was significant in vitamin premixes (p<0.05). The negative effect of storage time was significant for the retentions of VD3, VK3, VB1, VB2, VB5, and VB6 in vitamin premix (p<0.05). For VTM premixes, negative effect of storage time was significant (p<0.05) for the losses of vitamin in VTM premixes. Choline and high concentrations of Cu and Zn significantly increased VA, VK3, VB1, and VB2 loss during storage (p<0.05). The supplementation of high concentrations of Cu and Zn significantly decreased the concentrations of VD3 and VB6 (p<0.05) in VTM premixes at extended storage time. Conclusion: The maximum vitamin stability was detected in vitamin and VTM premixes containing no choline or excess Cu and Zn. The results indicated that extended storage time increased degradation of vitamin in vitamin or VTM premixes. These results may provide useful information for vitamin and VTM premixes to improve the knowledge of vitamin in terms of its stability. Objective: The present work was undertaken to evaluate the effects of storage time, choline chloride, and high concentrations of Cu and Zn on the kinetic behavior of vitamin degradation during storage in two vitamin premixes and four vitamin-trace mineral (VTM) premixes.Methods: Two vitamin premixes (with or without 160,000 mg/kg of choline) were stored at 25°C and 60% humidity. Besides, four VTM premixes were used to evaluate the effects of choline (0 vs 40,000 mg/kg) and trace minerals (low CuSO<sub>4</sub>+ZnO vs high CuSO<sub>4</sub>+ZnO) on vitamin stability in VTM premixes stored in room, and the VTM premixes were stored in room temperature at 22°C. Subsamples from each vitamin and VTM premix were collected at 0, 1, 2, 3, 6, and 12 months. The retention of vitamin A (VA), vitamin D<sub>3</sub> (VD<sub>3</sub>), vitamin E (VE), vitamin K<sub>3</sub> (VK<sub>3</sub>), vitamin B<sub>1</sub> (VB<sub>1</sub>), vitamin B<sub>2</sub> (VB<sub>2</sub>), vitamin B<sub>3</sub> (VB<sub>3</sub>), vitamin B<sub>5</sub> (VB<sub>5</sub>), and vitamin B<sub>6</sub> (VB<sub>6</sub>) in vitamin premixes and VTM premixes during storage was determined. The stability of vitamins in vitamin premixes and VTM premixes was determined and reported as the residual vitamin activity (% of initial) at each sampling point.Results: The effect of choline on VK<sub>3</sub> retention was significant in vitamin premixes (p<0.05). The negative effect of storage time was significant for the retentions of VD<sub>3</sub>, VK<sub>3</sub>, VB<sub>1</sub>, VB<sub>2</sub>, VB<sub>5</sub>, and VB<sub>6</sub> in vitamin premix (p<0.05). For VTM premixes, negative effect of storage time was significant (p<0.05) for the losses of vitamin in VTM premixes. Choline and high concentrations of Cu and Zn significantly increased VA, VK<sub>3</sub>, VB<sub>1</sub>, and VB<sub>2</sub> loss during storage (p<0.05). The supplementation of high concentrations of Cu and Zn significantly decreased the concentrations of VD<sub>3</sub> and VB<sub>6</sub> (p<0.05) in VTM premixes at extended storage time.Conclusion: The maximum vitamin stability was detected in vitamin and VTM premixes containing no choline or excess Cu and Zn. The results indicated that extended storage time increased degradation of vitamin in vitamin or VTM premixes. These results may provide useful information for vitamin and VTM premixes to improve the knowledge of vitamin in terms of its stability.

      • KCI등재

        Research on Li0.3Na0.18K0.52NO3 promoted Mg20Al-CO3 LDH/GO composites for CO2 capture

        Ying Yang,Kai Chen,Liang Huang,Min Li,Taiping Zhang,Mi Zhong,Ping Ning,Junya Wang,Shikun Wen 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.102 No.-

        It has been reported that the addition of graphene oxide (GO) can increase the dispersion and heterogeneousnucleation of layered double hydroxide (LDH), thus providing more active sites, which is more conduciveto CO2 adsorption. Herein, we reported alkali metal nitrates ((Li0.3Na0.18K0.52)NO3) promoted LDHand GO composites (LDH/GO) as adsorbents for CO2 capture. The influence of mass ratio of LDH to GO, theimpregnation ratio of alkali metal nitrates, the calcination and adsorption temperature, as well as thecycling stability were investigated systematically. The results indicated that the CO2 capture capacityof LDH/GO composite with 30 mol% (Li0.3Na0.18K0.52)NO3 could reach 4.51 mmol g 1, which was 5.86times higher than LDH/GO1 without loading alkali metal nitrates. Moreover, it had outstanding CO2adsorption capacity in the range from 200 C to 320 C. In addition, the cyclic adsorption and desorptiontest manifested that the CO2 uptake of the material can reach 3.07 mmol g 1 after 22 cycles. We believethat this study will give a significant contribution to fabrication of LDH based composites as CO2 adsorbentsin future study.

      • KCI등재

        Navigation-Assisted Full-Endoscopic Radiofrequency Rhizotomy Versus Fluoroscopy-Guided Cooled Radiofrequency Ablation for Sacroiliac Joint Pain Treatment: Comparative Study

        Chien-Min Chen,Jae Hwan Lee,Meng-Yin Yang,Shang-Wun Jhang,Kai-Sheng Chang,Su-Wei Ou,Li-Wei Sun,Kuo-Tai Chen 대한척추신경외과학회 2023 Neurospine Vol.20 No.1

        Objective: Sacroiliac joint (SIJ) pain is a common cause of chronic low back pain. Full-endoscopic rhizotomy of lateral branches of dorsal rami innervating SIJ is a potential option for patients’ refractory to medical treatment. The full-endoscopic rhizotomy is sometimes challenging under fluoroscopic guidance. This study is to evaluate the effectiveness of the navigation-assisted full-endoscopic rhizotomy for SIJ pain. Methods: The study was a retrospective match-paired study that enrolled consecutive patients undergoing navigation-assisted full-endoscopic rhizotomy for SIJ pain. The patient demographics, clinical outcomes, and operative parameters of endoscopic rhizotomy were compared with conventional cooled radiofrequency ablation (RFA) treatment. Results: The study enrolled 72 patients, including 36 patients in the endoscopic group. Thirty-six patients in the cooled RFA group were matched by age as the control. The follow-up time was at least 1 year. Patient characteristics were similar between the groups. The navigation-assisted endoscopic rhizotomy operation time was significantly longer than the cooled RFA. The visual analogue scale (VAS) for pain and Oswestry Disability Index (ODI) significantly decreased after each treatment. However, the between-group comparison revealed that the VAS and ODI of the patients after endoscopic rhizotomy were significantly lower than those after the cooled RFA group. There were no postoperative complications in the study. Conclusion: Navigation-assisted full-endoscopic rhizotomy is an alternative to SIJ pain treatment. Integrating intraoperative navigation can ensure accurate full-endoscopic rhizotomy to provide better durability of pain relief than the cooled RFA.

      • SCIEKCI등재

        The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

        Lu, Kai,Zhang, Min,Yang, Ran,Zhang, Min,Guo, Qinjun,Baek, Kwang-Hyun,Xu, Houjuan The Korean Society of Plant Pathology 2019 Plant Pathology Journal Vol.35 No.2

        Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

      • KCI등재

        Two-dimensional lamellar phosphogypsum/polyethylene glycol composite PCM: Fabrication and characterization

        Jinfen Lou,Kai Zhang,Shuhao Qin,Yang Lei,Yufei Liu,Min He,Jie Yu 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.113 No.-

        In this work, a nanocomposite phase change material (PCM) has been designed by combining twodimensionallamellar anhydrous calcium sulfate with polyethylene glycol (PEG). We report a facile strategyto controllably fabricate two-dimensional lamellar anhydrous calcium sulfate (LAH) with the averagethickness of 28.63 nm from phosphogypsum (PG) through ethylenediamine tetraacetic acid disodium(Na2EDTA) induction in glycerol and ethylene glycol solutions at 98 C. The obtained 2D lamellarCaSO4 was a slit-type mesoporous material stacked by the nanosheet of calcium sulfate. It has a specificsurface area of 70.02 m2/g, which is 10 times larger than phosphogypsum. Na2EDTA acts as a crystalhabit-directing agent to regulate crystal morphology through nonclassical nanoparticle-mediated crystallizationprocesses, resulting in the crystalline morphology tending to be lamellar. Lamellar anhydrouscalcium sulfate phase change composites (LAHPCMs) were prepared with 2D lamellar anhydrous nano-CaSO4 and polyethylene glycol (PEG). The LAHPCMs had a high latent heat storage capacity (92.99 J/g). Lamellar anhydrous calcium sulfate phase change composites have good thermal stability and durability,structure stability, and good liquid leakage resistance. These results provide the possibility for phosphogypsumto be used for energy storage and thermal insulation.

      • SCIESCOPUSKCI등재
      • Removal of the Glycosylation of Prion Protein Provokes Apoptosis in SF126

        Chen, Lan,Yang, Yang,Han, Jun,Zhang, Bao-Yun,Zhao, Lin,Nie, Kai,Wang, Xiao-Fan,Li, Feng,Gao, Chen,Dong, Xiao-Ping,Xu, Cai-Min Korean Society for Biochemistry and Molecular Biol 2007 Journal of biochemistry and molecular biology Vol.40 No.5

        Although the function of cellular prion protein (PrP$^C$) and the pathogenesis of prion diseases have been widely described, the mechanisms are not fully clarified. In this study, increases of the portion of non-glycosylated prion protein deposited in the hamster brains infected with scrapie strain 263K were described. To elucidate the pathological role of glycosylation profile of PrP, wild type human PrP (HuPrP) and two genetic engineering generated non-glycosylated PrP mutants (N181Q/N197Q and T183A/T199A) were transiently expressed in human astrocytoma cell line SF126. The results revealed that expressions of non-glycosylated PrP induced significantly more apoptosis cells than that of wild type PrP. It illustrated that Bcl-2 proteins might be involved in the apoptosis pathway of non-glycosylated PrPs. Our data highlights that removal of glycosylation of prion protein provokes cells apoptosis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼