RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재SCOPUS

        Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography

        Weikert,Thomas,Noordtzij,Luca,Andre,Bremerich,Jens,Stieltjes,Bram,Parmar,Victor,Cyriac,Joshy,Sommer,Gregor,Sauter,Alexander,Walter 대한영상의학회 2020 Korean Journal of Radiology Vol.21 No.7

        Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.

      • KCI등재SCOPUS

        Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings

        Weikert,Thomas,Rapaka,Saikiran,Grbic,Sasa,Re,Thomas,Chaganti,Shikha,Winkel,David,J.,Anastasopoulos,Constantin,Niemann,Tilo,Wiggli,Benedikt,J.,Bremerich,Jens,Twerenbold,Raphael,Sommer,Gregor,Comaniciu 대한영상의학회 2021 Korean Journal of Radiology Vol.22 No.6

        Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. Materials and Methods: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. Results: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79–0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77–0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85–0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66–0.88). Conclusion: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.

      맨 위로 스크롤 이동