RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain

        Yu, Shu-Min,Yan, Xing-Rong,Chen, Dong-Mei,Cheng, Xiang,Dou, Zhong-Ying Asian Australasian Association of Animal Productio 2011 Animal Bioscience Vol.24 No.1

        Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.

      • KCI등재

        Copolymerization Mechanisms of Propylene and Norbornadiene Catalyzed by Zirconocene Complexes: A Density Functional Theory Study

        Shu-Yuan Yu,Ping Ren,Hui-Min Zheng,Cheng-Gen Zhang 대한화학회 2018 Bulletin of the Korean Chemical Society Vol.39 No.3

        Copolymerization mechanisms of norbornadiene (NBD) and propylene, catalyzed by three zirconocene catalysts (namely, rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2/MAO (catA), rac-Me2Si(Ind)2ZrCl2/MAO (catB), and rac-CH2CH2(Ind)2ZrCl2/MAO(catC)), have been studied, using density functional theory computations. It has been found that the barrier (28.5 kcal mol−1) for the insertion of propylene to the [Zr]A-NBD-PP1 (the NBD insertion product) is significantly higher than those to [Zr]B-NBD-PP1 (22.9 kcal mol−1) and [Zr]C-NBD-PP1 (20.5 kcal mol−1), rationalizing the experimental observation that addition of NBD deactivated catA system but only lowered the catalytic activity of catB and catC systems. However, [Zr]A-NBD-PP1 can react with H2 easily, which displaces NBD−PP1 chain and gives active [Zr]A−H species to continue copolymerization, which is why the introduction of H2 could recover the catalytic activity of catA system.

      • KCI등재

        Telbivudine-Induced Myopathy: Clinical Features, Histopathological Characteristics, and Risk Factors

        Min-Yu Lan,Hui-Chen Lin,Tsung-Hui Hu,Shu-Fang Chen,Chien-Hung Chen,Yung-Yee Chang,King-Wah Chiu,Tsu-Kung Lin,Shun-Sheng Chen 대한신경과학회 2023 Journal of Clinical Neurology Vol.19 No.1

        Background and Purpose Oral nucleos(t)ide analogs (NAs) are the mainstay treatment for chronic hepatitis B (CHB). Myotoxicity is an important extrahepatic effect related to NA treatment. Telbivudine is the NA for CHB that is frequently associated with muscle-related side effects. The risk factors for telbivudine-induced myopathy (TIM) are not yet clear. Methods This study characterized the clinical, magnetic resonance images (MRI), and pathological features of 12 TIM cases. A group of telbivudine-tolerant (TT) patients with CHB who received regular telbivudine treatment during the same period without the occurrence of myopathy was collected. Demographic and clinical factors were compared between the patients with TIM and the TT controls. Factors independently associated with TIM were identified using logistic regression analysis. Results The patients with TIM (males/females: 7/5, mean age: 57 years) developed myopathy after using telbivudine for a median period of 19.5 months. Muscle histopathology revealed abnormal proliferation, subsarcolemmal or sarcoplasmic accumulations, and ultrastructural defects of mitochondria. When compared with TT cases, patients with TIM had a lower estimated glomerular filtration rate and were more frequently positive for hepatitis B e antigen (HBeAg). Conclusions Mitochondrial abnormalities are characteristic histopathological features, and impaired renal function and HBeAg positivity are risk factors for TIM. Telbivudine-induced mitochondrial dysfunction and immune activation related to mitochondrial damage and HBeAg serostatus changes may underlie TIM. Constant clinical surveillance of myopathy during telbivudine treatment is needed due to the significant latency of its development. Dose adjustment for impaired renal function does not eliminate the risk of TIM occurrence.

      • KCI등재

        Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer

        Shu-qian Wang,Yu Liu,Min-ya Yao,Jing Jin 대한의학회 2016 Journal of Korean medical science Vol.31 No.10

        Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma.

      • KCI등재

        Genotoxicity Test on 3,9-Diferuloyl-6-oxopterocarpen, a New Agent Candidate for Anti-aging Material

        Yu-Ri Jung,Sung-Min Park,Nam-Jin Lee,Hyeong-Bae Pyo,Geun Soo Kim,Jong-Hun You,Chun-Mei Lin,Zheng Mei Shu,Jong-Koo Kang 한국실험동물학회 2008 Laboratory Animal Research Vol.24 No.1

        To perform the safety studies on 3,9-diferuloyl-6-oxopterocarpen (DFO), we accomplished the reverse mutation assay in Salmonella typhimurium and Escherichia coli, in vitro chromosomal aberration assay on Chinese hamster lung cell and in vivo bone marrow micronucleus test in male ICR mice. In the reverse mutation assay, this material treatment at the dose range up to 5,000 ㎍/plate did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537 and in Escherichia coli WP2uvrA-with and without metabolic activation. In the in vitro chromosomal aberration assay, this material did not increase the number of cells having structural or numerical chromosome aberration. In the in vivo bone marrow micronucleus assay, no significant increase in the occurrence of micronucleated polychromatic erythrocytes was observed in male ICR mice administered this material. In conclusion, we suggested that DFO have no genotoxicity in reverse mutation assay, in vitro chromosomal aberration assay and in vivo bone marrow micronucleus test.

      • Anti-tumor Efficacy of a Hepatocellular Carcinoma Vaccine Based on Dendritic Cells Combined with Tumor-derived Autophagosomes in Murine Models

        Su, Shu,Zhou, Hao,Xue, Meng,Liu, Jing-Yu,Ding, Lei,Cao, Meng,Zhou, Zhen-Xian,Hu, Hong-Min,Wang, Li-Xin Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.5

        The majority of hepatocellular carcinoma (HCC) patients have a poor prognosis with current therapies, and new approaches are urgently needed. We have developed a novel therapeutic cancer vaccine platform based on tumor cell derived autophagosomes (DRibbles) for cancer immunotherapy. We here evaluated the effectiveness of DRibbles-pulsed dendritic cell (DC) immunization to induce anti-tumor immunity in BALB/c mouse HCC and humanized HCC mouse models generated by transplantation of human HCC cells (HepG2) into BALB/c-nu mice. DRibbles were enriched from H22 or BNL cells, BALB/c-derived HCC cell lines, by inducing autophagy and blocking protein degradation. DRibbles-pulsed DC immunization induced a specific T cell response against HCC and resulted in significant inhibition of tumor growth compared to mice treated with DCs alone. Antitumor efficacy of the DCs-DRibbles vaccine was also demonstrated in a humanized HCC mouse model. The results indicated that HCC/DRibbles-pulsed DCs immunotherapy might be useful for suppressing the growth of residual tumors after primary therapy of human HCC.

      • SCOPUSKCI등재

        Ergostatrien-3β-ol (EK100) from Antrodia camphorata Attenuates Oxidative Stress, Inflammation, and Liver Injury In Vitro and In Vivo

        Ting-Yu Chao,Cheng-Chu Hsieh,Shih-Min Hsu,Cho-Hua Wan,Guan-Ting Lian,Yi-Han Tseng,Yueh-Hsiung Kuo,Shu-Chen Hsieh 한국식품영양과학회 2021 Preventive Nutrition and Food Science Vol.26 No.1

        Hepatic ischemia/reperfusion (IR) injury is a complication that occurs during liver surgery, whereby hepatic tissue is injured by oxygen deficiency during ischemia, then further damaged by a cascade of inflammatory and oxidative insults when blood is resupplied during reperfusion. Antrodia camphorata is an indigenous fungus in Taiwan and an esteemed Chinese herbal medicine with various bioactivities. This study examined the effect of ergostatrien-3β-ol (EK100), an active compound found in both the fruiting body and mycelia of A. camphorata, on IR injury pathologies in rats and cell models of oxidative and inflammatory stress. Male Sprague-Dawley rats were randomly assigned to receive a vehicle or 5 mg/kg EK100 prior to hepatic IR injury induced by 1 h ischemia followed by 24 h reperfusion, or a sham operation. RAW 264.7 murine macrophages and HepG2 hepatocytes were pretreated with EK100, then inflammation was induced with lipopolysaccharides in the former and oxidative stress was induced with hydrogen peroxide in the latter. EK100 decreased IR-induced elevation in serum levels of alanine aminotransferase and aspartate aminotransferase and lowered levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. In addition, EK100 significantly reduced hepatic mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, as well as nitrite production and iNOS gene expression in both hepatocyte and macrophage cell lines. We demonstrated that EK100 exhibits potent protection against hepatic IR injury, which may be used to design strategies to ameliorate liver damage during liver surgery.

      • KCI등재
      • KCI등재

        Impact of the COVID-19 vaccine booster strategy on vaccine protection: a pilot study of a military hospital in Taiwan

        Wang Yu-Li,Cheng Shu-Tsai,Shen Ching-Fen,Huang Shu-Wei,Cheng Chao-Min 대한백신학회 2023 Clinical and Experimental Vaccine Research Vol.12 No.4

        Purpose: The global fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to widespread vaccination efforts, yet the optimal dosing schedule for SARS-CoV-2 vaccines remains a subject of ongoing research. This study aims to investigate the effectiveness of administering two booster doses as the third and fourth doses at different intervals to enhance vaccine protection. Materials and Methods: This study was conducted at a military regional hospital operated by the Ministry of National Defense in Taiwan. A cohort of vaccinated individuals was selected, and their vaccine potency was assessed at various time intervals following their initial vaccine administration. The study participants received booster doses as the third and fourth doses, with differing time intervals between them. The study monitored neutralizing antibody titers and other relevant parameters to assess vaccine efficacy. Results: Our findings revealed that the potency of the SARS-CoV-2 vaccine exhibited a significant decline 80 days after the initial vaccine administration. However, a longer interval of 175 days between booster injections resulted in significantly higher neutralizing antibody titers. The individuals who received the extended interval boosters exhibited a more robust immune response, suggesting that a vaccine schedule with a 175-day interval between injections may provide superior protection against SARS-CoV-2. Conclusion: This study underscores the importance of optimizing vaccine booster dosing schedules to maximize protection against SARS-CoV-2. The results indicate that a longer interval of 175 days between the third and fourth doses of the vaccine can significantly enhance the neutralizing antibody response, potentially offering improved protection against the virus. These findings have important implications for vaccine distribution and administration strategies in the ongoing battle against the SARS-CoV-2 pandemic. Further research and large-scale trials are needed to confirm and extend these findings for broader public health implications.

      • Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice

        Jiang, Shu-Heng,Li, Jun,Dong, Fang-Yuan,Yang, Jian-Yu,Liu, De-Jun,Yang, Xiao-Mei,Wang, Ya-Hui,Yang, Min-Wei,Fu, Xue-Liang,Zhang, Xiao-Xin,Li, Qing,Pang, Xiu-Feng,Huo, Yan-Miao,Li, Jiao,Zhang, Jun-Feng Elsevier 2017 Gastroenterology Vol.153 No.1

        <P><B>Background & Aims</B></P> <P>Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors.</P> <P><B>Methods</B></P> <P>We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras<SUP>G12D/+</SUP>/Trp53<SUP>R172H/+</SUP>/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses.</P> <P><B>Results</B></P> <P>In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B–LYN–p85 complex, which increased PI3K–Akt–mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice.</P> <P><B>Conclusions</B></P> <P>Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼