RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design and Optimization of Microstructure for Improved Corrosion Resistance in Laser Surface Alloyed Aluminum with Molybdenum

        Hitesh D. Vora,Narendra B. Dahotre,Ravi Shanker Rajamure,Santhanakrishnan Soundarapandian,S. G. Srinivasan 한국정밀공학회 2013 International Journal of Precision Engineering and Vol. No.

        The in-situ measurement of dilution during the laser surface alloying process is an enormously difficult task, due to the localized nature of laser energy and very short laser-material interaction time. Therefore, a computational approach (finite-element method and analysis of variance) was effectively employed to evaluate the dilution during the laser surface alloying process. Firstly, a finiteelement model based on COMSOL™ multiphysics was developed to predict the dilution of Mo with Al during non-equilibrium laser surface alloying process. Secondly, the optimization model based on Design-Expert® was developed to find the optimal laser surface alloying parameters (laser power, scanning speed, and fill spacing) to obtain a microstructure suitable for improved corrosion resistance that is primarily attributed to the formation of Al5Mo intermetallic phase (16.7 at% Mo). The present optimization model utilized the prior experimental and computational (finite-element) modeling data for the concentration of Mo (at%). The optimization analyses were carried out for the all the current datasets and the analysis revealed 44 optimal solutions that indicate the highest desirability. The confirmation runs were carried out to validate the optimization model. The experimental observation showed that the sample processed with optimal processing conditions demonstrates good corrosion resistance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼