RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy

        Kim Seong-Oh,Kim Joonhui,Okajima Takaharu,Cho Nam-Joon 나노기술연구협의회 2017 Nano Convergence Vol.4 No.5

        Background Cell fixation is an essential step to preserve cell samples for a wide range of biological assays involving histochemical and cytochemical analysis. Paraformaldehyde (PFA) has been widely used as a cross-linking fixation agent. It has been empirically recognized in a gold standard protocol that the PFA concentration for cell fixation, C PFA, is 4%. However, it is still not quantitatively clear how the conventional protocol of C PFA is optimized. Methods Here, we investigated the mechanical properties of cell fixation as a function of C PFA by using atomic force microscopy and scanning ion conductance microscopy. The goal of this study is to investigate the effect of C PFA (0–10 wt%) on the morphological and mechanical properties of live and fixed mouse fibroblast cells. Results We found that both Young’s modulus, E, and the fluctuation amplitude of apical cell membrane, a m, were almost constant in a lower C PFA (<10−4%). Interestingly, in an intermediate C PFA between 10−1 and 4%, E dramatically increased whereas a m abruptly decreased, indicating that entire cells begin to fix at C PFA = ca. 10−1%. Moreover, these quantities were unchanged in a higher C PFA (>4%), indicating that the cell fixation is stabilized at C PFA = ca. 4%, which is consistent with the empirical concentration of cell fixation optimized in biological protocols. Conclusions Taken together, these findings offer a deeper understanding of how varying PFA concentrations influence the mechanical properties of cells and suggest new avenues for establishing refined cell fixation protocols. Background Cell fixation is an essential step to preserve cell samples for a wide range of biological assays involving histochemical and cytochemical analysis. Paraformaldehyde (PFA) has been widely used as a cross-linking fixation agent. It has been empirically recognized in a gold standard protocol that the PFA concentration for cell fixation, C PFA, is 4%. However, it is still not quantitatively clear how the conventional protocol of C PFA is optimized. Methods Here, we investigated the mechanical properties of cell fixation as a function of C PFA by using atomic force microscopy and scanning ion conductance microscopy. The goal of this study is to investigate the effect of C PFA (0–10 wt%) on the morphological and mechanical properties of live and fixed mouse fibroblast cells. Results We found that both Young’s modulus, E, and the fluctuation amplitude of apical cell membrane, a m, were almost constant in a lower C PFA (<10−4%). Interestingly, in an intermediate C PFA between 10−1 and 4%, E dramatically increased whereas a m abruptly decreased, indicating that entire cells begin to fix at C PFA = ca. 10−1%. Moreover, these quantities were unchanged in a higher C PFA (>4%), indicating that the cell fixation is stabilized at C PFA = ca. 4%, which is consistent with the empirical concentration of cell fixation optimized in biological protocols. Conclusions Taken together, these findings offer a deeper understanding of how varying PFA concentrations influence the mechanical properties of cells and suggest new avenues for establishing refined cell fixation protocols.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼