RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

        Muhammad Aun Bashir,Hitoshi Furuuchi,Tamon Ueda,M. Nauman Bashir 국제구조공학회 2013 Steel and Composite Structures, An International J Vol.15 No.6

        The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

      • KCI등재

        A Multi-layer Parallel Crack Extension Model for Deformational Response of Post-installed Anchor

        Muhammad Saleem,Asad Ullah Qazi,Asif Hameed,Muhammad Aun Bashir 대한토목학회 2013 KSCE JOURNAL OF CIVIL ENGINEERING Vol.17 No.5

        A simultaneous crack extension pull-out model for post-installed anchor bar is presented. The anchor bar is such that used in various strengthening techniques to strengthen reinforced concrete structures. The properties of the infill material used for postinstalled anchor bar are characterized by a nonlinear interface between the surrounding concrete and the anchor bar. This is a new type of anchor-infill assembly in which the infill material is divided into two layers for the purpose of providing a larger failure path length resulting in increase of the energy absorption and pull-out load capacity. The mechanical properties of the infill layer are different from the surrounding concrete. Therefore the existing pull-out model of deformed bars cannot be applied directly in this case. The interfacial de-bonding is examined by the strength criterion expressed in terms of interfacial shear stress. Pre-existing cracks representing artificial notches are assumed at the top of infill layers for identifying crack location and stabilizing its propagation direction. All the possibilities associated with two-cracks in the close vicinity have been investigated in detail. The objective of the analysis is to predict a set of material properties which result in simultaneous crack extension at the two interfaces and also to identify a simultaneous crack extension length which results in increasing the pull-out load capacity, increase in energy absorption and increased failure path length but achieved at lowest increase in pull-out deformation thereby proving the effectiveness of two-layer model. Limiting the pull-out deformation is desirable from the point of view of limiting damage.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼