RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        더보기
        • 무료
        • 기관 내 무료
        • 유료
        • Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis

          Tripathi, Kumud Malika,Kim, TaeYoung,Losic, Dusan,Tung, Tran Thanh Elsevier 2016 Carbon Vol.110 No.-

          <P>Point-of-care (POC) diagnostic technologies for early stage diagnosis and real-time monitoring of medical conditions are important element of healthcare strategy to improve medical treatment outcomes. Graphed, one-atom-thick fabric of carbon, has attracted enormous attention as a new sensing platform for the development of a new generation of nanoscale sensing devices. The two-dimensional (2D) nano structure and high surface-to-volume ratio of graphene provide a strategy for designing sensing devices with capability to detect diverse analyte molecules. Their excellent conductivity and zero-band gap features promote electron transport between the sensor and analyte molecules, which is crucial for the development of ultra-fast-responsive and high sensitive devices for numerous biomedical applications. Particularly, owing to ease of fabrication and miniaturization, low cost, and simplicity of operation, graphene-based sensors offer a great potential for portable real-time medical diagnostics, when compared with conventional techniques based on expensive and labor extensive lab-bench instruments. This review provides a brief overview of recent progress in graphene-based sensors for the detection of volatile organic compounds (VOCs) and diagnosis of diseases via non-invasive analysis. Techniques for the fabrication of sensors and critical analysis of VOCs detection devices associated with various diseases are presented. We also summarized approaches to overcome the remaining obstacles in real-world applications of sensors in clinical diagnosis. (C) 2016 Elsevier Ltd. All rights reserved.</P>

        • KCI등재

          Electromigration with enhanced green emission in the titanium dioxide nanotube/graphene composite

          Tri Tuan Nguyen,Tran Thanh Tung,Dusan Losic,Luu Thi Lan Anh,Le Hong Phuc,Xuan Sang Nguyen 한국물리학회 2019 Current Applied Physics Vol.19 No.10

          One of the most studied photoluminescence emission peaks of anatase titanium dioxide (TiO2) is green, located at about 520 nm, which is assigned to the radiative recombination between a mobile electron in the conduction band and oxygen vacancy defect as a trapped hole in the bandgap. Composite materials of TiO2 with graphene are normally shown by the gradual quenching of photoluminescence intensity as a result of carrier lifetime extension, which is important to enhance photocatalytic activity. Herein we report an observation of the intensity enhancement of the green PL emission in a composite TiO2 nanotube (TNT) and graphene produced through facile hydrothermal synthesis. The heterojunction formation of graphene and TNT makes the excited photoelectrons easy to diffuse from TNT to graphene. Hence, the recombination rate of mobile electrons in graphene and trapped holes located on the nanotube surface is enhanced due to the high mobility of electrons in graphene.

        • Chemodosimeter functionalized diatomaceous earth particles for visual detection and removal of trace mercury ions from water

          Patil, Pravin,Madhuprasad, Pravin,Bhat, Mahesh P.,Gatti, Manasa G.,Kabiri, Shervin,Altalhi, Tariq,Jung, Ho-Young,Losic, Dusan,Kurkuri, Mahaveer Elsevier 2017 Chemical engineering journal Vol.327 No.-

          <P><B>Abstract</B></P> <P>The rhodamine based receptor, P2 has been developed for the detection of environmentally hazardous Hg<SUP>2+</SUP> ions with a limit of detection, 1.5×10<SUP>−6</SUP> M. The P2 showed a significant colour change from colourless to pink upon binding with Hg<SUP>2+</SUP> ions. As a result, a new peak at 533nm was observed in UV–vis spectroscopy which was attributed to spirolactum ring opening followed by through bond energy transfer (TBET). In addition, the presence of other competing cations did not interfere the detection of Hg<SUP>2+</SUP> ions. Further, P2 has been successfully immobilized onto the naturally available and highly porous diatomaceous earth particles (P2D) for removal of Hg<SUP>2+</SUP> ions from water. The covalently attached organic molecule in P2D forms complex with Hg<SUP>2+</SUP> ion present in the water and thus traps the Hg<SUP>2+</SUP> ions. Based on this, a proof-of-concept cartridge has been developed for water purification. The cartridge having 450mg of P2D was able to purify 30mL of water containing 1ppm Hg<SUP>2+</SUP> ions. The efficiency of cartridge could be visualized with a colour change from colourless to pink.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Detection and removal of Hg<SUP>2+</SUP> from water using chemodosimeter P2 were realized. </LI> <LI> P2 has been successfully immobilized onto naturally available diatoms (P2D). </LI> <LI> Organic receptor and hazardous Hg<SUP>2+</SUP> ions were physically contained in diatoms. </LI> <LI> Eco-friendly cartridge containing P2D was developed for the removal of Hg<SUP>2+</SUP> ions. </LI> <LI> Device efficiency (time to replace) could be realized through visual colour change. </LI> </UL> </P>

        • SCISCIESCOPUS

          Anodization of FeAl intermetallic alloys for bandgap tunable nanoporous mixed aluminum-iron oxide

          Stepniowski, W.J.,Choi, J.,Yoo, H.,Oh, K.,Michalska-Domanska, M.,Chilimoniuk, P.,Czujko, T.,Lyszkowski, R.,Jozwiak, S.,Bojar, Z.,Losic, D. Elsevier Sequoia 2016 Journal of Electroanalytical Chemistry Vol.771 No.-

          <P>Using a two-step self-organizing anodization of FeAl intermetallic alloy in sulfuric acid, a mixed nanoporous anodic aluminum-iron oxide composite with a voltage-controlled morphology and bandgap was obtained. The chemical composition of nanoporous oxide composites formed with Al, Fe and 0 elements was determined by X-ray photoelectron spectroscopy. It was demonstrated that bandgap of the resulting anodic oxide composites can be tuned from 3.65 eV (samples prepared at 5 V) to 2.06 eV (samples prepared at 17.5 V), which was attributed to the increase in the composition ratio of the oxyhydroxide MOOH (where M = Al and Fe). Thus, water is more involved in the formation of oxide MOOH. After annealing at 600 degrees C, X-ray diffraction confirmed formation of a spinet phase of FeAl2O4. FE-SEM observations of the formed oxide demonstrated that ultra-small nanopores with a diameter of 12.8 +/- 3.0 nm were formed at 5 V. The pore diameter and interpore distance were found to be linearly dependent on the voltage; however, slopes of the fitted curves were much larger than that of nanoporous anodic oxide formed on aluminum. Large current densities recorded during anodization allowed for formation of nanoporous anodic oxide with a growth rate of up to 743.0 +/- 17.9 mu m/h (20 V). (C) 2016 Elsevier B.V. All rights reserved.</P>

        맨 위로 스크롤 이동