RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Synchronous immobilization and conversion of polysulfides on a VO<sub>2</sub>-VN binary host targeting high sulfur load Li-S batteries

        Song, Yingze,Zhao, Wen,Kong, Long,Zhang, Li,Zhu, Xingyu,Shao, Yuanlong,Ding, Feng,Zhang, Qiang,Sun, Jingyu,Liu, Zhongfan The Royal Society of Chemistry 2018 ENERGY AND ENVIRONMENTAL SCIENCE Vol.11 No.9

        <P>Lithium-sulfur (Li-S) batteries are deemed as one of the most promising next-generation energy storage systems. However, their practical application is hindered by existing drawbacks such as poor cycling life and low Coulombic efficiency due to the shuttle effect of lithium polysulfides (LiPSs). We herein present an <I>in situ</I> constructed VO2-VN binary host which combines the merits of ultrafast anchoring (VO2) with electronic conducting (VN) to accomplish smooth immobilization-diffusion-conversion of LiPSs. Such synchronous advantages have effectively alleviated the polysulfide shuttling, promoted the redox kinetics, and hence improved the electrochemical performance of Li-S batteries. As a result, the sulfur cathode based on the VO2-VN/graphene host exhibited an impressive rate capability with ∼1105 and 935 mA h g<SUP>−1</SUP> at 1C and 2C, respectively, and maintained long-term cyclability with a low capacity decay of 0.06% per cycle within 800 cycles at 2C. More remarkably, favorable cyclic stability can be attained with a high sulfur loading (13.2 mg cm<SUP>−2</SUP>). Even at an elevated temperature (50 °C), the cathodes still delivered superior rate capacity. Our work emphasizes the importance of immobilization-diffusion-conversion of LiPSs toward the rational design of high-load and long-life Li-S batteries.</P>

      • SCISCIESCOPUS

        Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells

        Noh, Hyangsoon,Zhao, Qingnan,Yan, Jun,Kong, Ling-Yuan,Gabrusiewicz, Konrad,Hong, Sungguan,Xia, Xueqing,Heimberger, Amy B.,Li, Shulin Elsevier 2018 Cancer letters Vol.433 No.-

        <P><B>Abstract</B></P> <P>Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor. The current standard therapy, which includes radiation and chemotherapy, is frequently ineffective partially because of drug resistance and poor penetration of the blood-brain barrier. Reducing resistance and increasing sensitivity to chemotherapy may improve outcomes. Glioma stem cells (GSCs) are a source of relapse and chemoresistance in GBM; sensitization of GSCs to temozoliomide (TMZ), the primary chemotherapeutic agent used to treat GBM, is therefore integral for therapeutic efficacy. We previously discovered a unique tumor-specific target, cell surface vimentin (CSV), on patient-derived GSCs. In this study, we found that the anti-CSV monoclonal antibody 86C efficiently increased GSC sensitivity to TMZ. The combination TMZ+86C induced significantly greater antitumor effects than TMZ alone in eight of 12 GSC lines. TMZ+86C–sensitive GSCs had higher CSV expression overall and faster CSV resurfacing among CSV<SUP>−</SUP> GSCs compared with TMZ+86C–resistant GSCs. Finally, TMZ+86C increased apoptosis of tumor cells and prolonged survival compared with either drug alone in GBM mouse models. The combination of TMZ+86C represents a promising strategy to reverse GSC chemoresistance.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Anti-CSV monoclonal antibody 86C sensitize GSCs to TMZ treatment. </LI> <LI> GSCs with higher CSV expression are more sensitive to TMZ+86C. </LI> <LI> GSCs with higher CSV resurfacing rate among CSV<SUP>−</SUP> cells are more sensitive to TMZ+86C. </LI> <LI> TMZ+86C increased apoptosis and prolonged survival in GBM models. </LI> <LI> Tumor-specific CSV antibody 86C can efficiently target human GSCs to increase their sensitivity to TMZ. </LI> </UL> </P>

      • SCISCIESCOPUS

        Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors

        Li, Xinlin,Lee, Gyu Sung,Park, So Hyun,Kong, Hoyoul,An, Tae Kyu,Kim, Se Hyun Elsevier 2018 ORGANIC ELECTRONICS Vol.62 No.-

        <P><B>Abstract</B></P> <P>AgNWs-based electrodes were directly patterned using an electrohydrodynamic (EHD) jet printing technique. We investigated EHD jet printing for AgNWs ink in detail, and established the optimum printing conditions in dragging mode for controlling the dimensions and conductivity of the AgNWs network, although the cone-jet printing mode has been the most conventionally used mode for EHD jet printing. The printed AgNWs were used as source/drain (S/D) electrodes of an organic thin film transistor (OTFT) with bottom-contact geometry, and yielded an average field-effect mobility (<I>μ</I> <SUB>FET</SUB>), threshold voltage (<I>V</I> <SUB>th</SUB>) and on/off current ratio (<I>I</I> <SUB>on</SUB>/<I>I</I> <SUB>off</SUB>) of 0.48 cm<SUP>2</SUP>/V, −11.2 V, and ∼10<SUP>6</SUP>, respectively. In addition, we investigate the interface morphologies between pentacene and AgNWs S/D electrode to figure out charge carrier injection property of AgNWs S/D electrode, by comparing vacuum-deposited Au ones.</P> <P><B>Highlights</B></P> <P> <UL> <LI> We investigated electrohydrodynamic (EHD) jet printing for silver nanowires (AgNW) ink. </LI> <LI> The optimum printing mode can control the dimensions and conductivity of AgNW network. </LI> <LI> EHD-jet-printed AgNWs were used as the electrodes of pentacene OTFTs. </LI> <LI> AgNW-based OTFTs showed a μ<SUB>FET</SUB> of 0.48 cm<SUP>2</SUP>/V, 100 times that of gold-based OTFTs. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells

        Zheng, Yongping,Yang, Dae-Soo,Kweun, Joshua M.,Li, Chenzhe,Tan, Kui,Kong, Fantai,Liang, Chaoping,Chabal, Yves J.,Kim, Yoon Young,Cho, Maenghyo,Yu, Jong-Sung,Cho, Kyeongjae Elsevier 2016 Nano energy Vol.30 No.-

        <P><B>Abstract</B></P> <P>Bio-inspired non-precious-metal catalysts based on iron and cobalt porphyrins are promising alternatives to replace costly platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. However, the exact nature of the active sites is still not clearly understood, and further optimization design is needed for practical applications. Here, we report a rational catalyst design process by combining density functional theory (DFT) calculations and experimental validations. Two sets of square-planar (MN<SUB>x</SUB>C<SUB>4−x</SUB>) and square-pyramid (MN<SUB>x</SUB>C<SUB>5−x</SUB>) active centers (M=Mn, Fe, Co, Ni) incorporated in graphene were examined using DFT. Fe-N<SUB>5</SUB> and Co-N<SUB>4</SUB> sites were identified theoretically to have the best performance in fuel cells, while Ni-N<SUB>x</SUB>C<SUB>4−x</SUB> sites catalyze the most H<SUB>2</SUB>O<SUB>2</SUB> byproduct. Graphene samples with well-dispersed incorporations of metals were synthesized, and the following electrochemical measurements show an excellent agreement with the theoretical predictions, indicating that a successful design framework and systematic understanding toward the catalytic nature of these materials are established.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Graphene based catalysts design for ORR is demonstrated by combining experiments and modellings. </LI> <LI> Iron porphyrin like active site is unraveled to be five nitrogen coordinated as FeN<SUB>5</SUB>. </LI> <LI> Cobalt porphyrin like active site is shown to be four nitrogen coordinated as CoN<SUB>4</SUB>. </LI> <LI> Nickel porphyrin like catalyst is potentially used for catalytic synthesis of H<SUB>2</SUB>O<SUB>2</SUB>. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign

        Xing, Qianguo,Wu, Lingling,Tian, Liqiao,Cui, Tingwei,Li, Lin,Kong, Fanzhou,Gao, Xuelu,Wu, Mengquan Elsevier 2018 Marine pollution bulletin Vol.133 No.-

        <P><B>Abstract</B></P> <P>The world's largest green tide originated from the Jiangsu Shoal of the Yellow Sea was due to fast reproduction of floating green macroalgae (<I>Ulva prolifera</I>). It brought significant impacts on marine environment and ecosystem in the Yellow Sea. In this study, we examined the expansion of green tide from the Jiangsu Shoal during the period from 29 April to 25 June 2016. Using high-resolution satellite images, we revealed a declined growth rate during the northward drifting of early-stage green tide for the first time, i.e., the green tide had higher growth rate (up to 25% per day) in the turbid waters of the Jiangsu Shoal in May and a lower growth rate (low to 3% per day) in the relatively clear waters in the middle of the western Yellow Sea in June, which suggests that water clarity might not be the key factor controlling the growth rate of the floating macroalgae in the surface waters under natural conditions. The high growth rate led to shortened time windows for controlling the green tide by employing macroalgae collecting campaigns at the initial sites of the green tide, which was no more than 14 days in the 2016 case.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Using high-resolution satellite image for detecting early-stage green tide </LI> <LI> Found changing growth rate of green tide </LI> <LI> Assessed the countermeasure of collecting floating-macroalgae at the initial sites </LI> </UL> </P>

      • SCIESCOPUSKCI등재

        Capacitation-associated Changes in Protein-tyrosine-phosphorylation, Hyperactivation and Acrosome Reaction in Guinea Pig Sperm

        Kong, Li-Juan,Shao, Bo,Wang, Gen-Lin,Dai, Ting-Ting,Xu, Lu,Huang, Jing-Yan Asian Australasian Association of Animal Productio 2008 Animal Bioscience Vol.21 No.2

        The aim of this study was to evaluate the effects of $Ca^{2+}$, $HCO_3{^-}$ and BSA on the in vitro capacitation-associated protein tyrosine phosphorylation, hyperactivation and acrosome reaction in guinea pig sperm. Caudal epididymal sperm were incubated in four different groups: modified TALP (Tyrode's albumin lactate pyruvate) or TALP without one of the medium constituents ($Ca^{2+}$, $HCO_3{^-}$ and BSA). After incubation for the required time (0 h, 0.5 h, 1 h, 3 h, 5 h, and 7 h), sperm were removed for further experiment. The capacitation effect was assessed by CTC (Chlortetracycline) staining. Western blotting and indirect immunofluorescence were used to analyze the level and localization of tyrosine phosphorylation. The results showed that guinea pig sperm underwent a time-dependent increase in protein tyrosine phosphorylation during the in vitro capacitation and the percentage of protein tyrosine phosphorylated sperm increased from 36% to 92% from the beginning of incubation to 7 h incubation. Also, there was a shift in the site of phosphotyrosine-specific fluorescence from the head of sperm to both the head and the flagellum. Moreover, an absence of $Ca^{2+}$ or $HCO_3{^-}$ inhibited in vitro hyperactivation and acrosome reaction and decreased the phosphorylation of the proteins throughout the period of in vitro capacitation. However, an absence of BSA could not influence these processes if substituted by polyvinyl alcohol (PVA) in the medium.

      • KCI등재

        Combined Administration of the Mixture of Honokiol and Magnolol and Ginger Oil Evokes Antidepressant-like Synergism in Rats

        Li-Qin Qiang,Ling-Dong Kong,Cai-Ping Wang,Fu-Meng Wang,Ying Pan,Li-Tao Yi,Xian Zhang 대한약학회 2009 Archives of Pharmacal Research Vol.32 No.9

        Magnolia bark combined with ginger rhizome is a common drug pair in traditional Chinese prescriptions for the treatment of depression. In the present study, we examined antidepressant-like effects of the mixture of honokiol and magnolol (HMM) from magnolia bark and essential oil from ginger rhizome (OGR) alone and in combination in chronic unpredictable mild stress (CUMS) of rats. Behavioral (sucrose intake, immobility time of forced swimming test) and biochemical parameters [serotonin (5-HT) in prefrontal cortex, hippocampus, and striatum, gastric mucosa cholecystokinin (CCK) and serum gastrin (GAS) levels] were simultaneously examined in the CUMS rats. 20 mg/kg HMM alone, but not OGR, significantly increased sucrose intake and reduced immobility time in the CUMS rats. Moreover, 20 mg/kg HMM and 14 mg/kg OGR in combination exhibited significant synergistic effects on sucrose intake increase and immobility time reduction in the CUMS rats. HMM elevated 5-HT levels in various brain regions, and OGR reduced gastric mucosa CCK and serum GAS levels in the CUMS rats. These results suggested that the synergistic antidepressant-like effects of compatibility of HMM with OGR might be mediated simultaneously by regulation of the serotonergic and gastroenteric system functions. These findings also provided a pharmacological basis for the clinical application of this drug pair of magnolia bark and ginger rhizome in traditional Chinese medicine.

      • KCI등재

        Steel scale-CaO composite catalyst for coke combustion and in-situ NO and SO2 removal

        Li Zhang,Jingchong Yan,Zhiping Lei,Xianzhong Cao,Tiejun Chun,Zhanku Li,Hengfu Shui,Shibiao Ren,Zhicai Wang,Ying Kong 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.110 No.-

        The performance of the steel scale (SS)-CaO composite on the combustion of coke nuts and in-situ reductionof SO2 and NO emission was investigated. Combustion experiments show that SS-CaO compositeaccelerates coke combustion and reduces SO2 and NO emissions concurrently. X-ray diffraction (XRD),scanning electron microscopy (SEM), and electron spin resonance (ESR) were used to investigate thecatalysis mechanism. Results show that SS and CaO have synergistic effect in in-situ denitration. Theincrease of SS and CaO fraction in the composites improve the denitration and sulfur fixation performance,respectively. The denitration activity is mainly attributed to the Fe2O3 in SS and Ca2Fe2O5 formedduring combustion. The desulfurization is due to the sulfur fixation with CaO. The increasing fraction ofCaO in the composites leads to the agglomeration of ash particles. 2%CaO is confirmed as the optimumaddition for catalytic combustion and emission reduction. This work sheds light on the cheap and effectivecatalysts that are potentially useful for iron ore sintering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼