RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A polymeric composite protective layer for stable Li metal anodes

        Guo Suogang,Wang Li,Jin Yuhong,Piao Nan,Chen Zonghai,Tian Guangyu,Li Jiangang,Zhao Chenchen,He Xiangming 나노기술연구협의회 2020 Nano Convergence Vol.7 No.21

        Lithium (Li) metal is a promising anode for high-performance secondary lithium batteries with high energy density due to its highest theoretical specific capacity and lowest electrochemical potential among anode materials. However, the dendritic growth and detrimental reactions with electrolyte during Li plating raise safety concerns and lead to premature failure. Herein, we report that a homogeneous nanocomposite protective layer, prepared by uniformly dispersing ­AlPO 4 nanoparticles into the vinylidene fluoride-co-hexafluoropropylene matrix, can effectively prevent dendrite growth and lead to superior cycling performance due to synergistic influence of homogeneous Li plating and electronic insulation of polymeric layer. The results reveal that the protected Li anode is able to sustain repeated Li plating/stripping for > 750 cycles under a high current density of 3 mA cm −2 and a renders a practical specific capacity of 2 mAh cm −2 . Moreover, full-cell Li-ion battery is constructed by using ­LiFePO 4 and protected Li as a cathode and anode, respectively, rendering a stable capacity after 400 charge/discharge cycles. The current work presents a promising approach to stabilize Li metal anodes for next-generation Li secondary batteries.

      • KCI등재

        In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities

        Jiangang Zheng,Yinlan Xu,Ajab Khan,Shaoyu Wang,Hongquan Li,Na Sun 한국생물공학회 2020 Biotechnology and Bioprocess Engineering Vol.25 No.2

        The prevalence of encephalomyocarditis virus has brought about enormous financial losses to the swine industry throughout the globe. Chinese herbal medicines have potential antiviral activity which has been proved. Fifteen traditional Chinese medicine compounds were screened for anti-encephalomyocarditis virus (EMCV) activity. The maximum non-toxic concentration (MNTC), cytotoxic concentration 50% (CC50), maximal inhibition rate (MIR), and effective concentration 50% (EC50) against EMCV were measured using MTT and antiviral assays on baby hamster syrian kidney (BHK-21) cells. Two of the compounds, baicalin and matrine, with MIR > 50% and selective index (SI) > 3 were chosen for further virus load analysis. The results showed that the MIRs of baicalin and matrine were higher than that of positive control ribavirin while the SI values were much smaller than that of the control. Real-time quantitative PCR analysis demonstrated that baicalin and matrine have significant (p < 0.05) anti- EMCV activity compared to the control. It is a baseline study concluded that baicalin and matrine needs further development as an independent drugs or part of a Chinese medicine prescription for the treatment of EMCV infection.

      • KCI등재

        Noninvasive monitoring of mouse renal allograft rejection using micro-CT

        Jiangang Hou,Masayuki Fujino,Songjie Cai,Qiang Ding,Xiao-Kang Li 대한외과학회 2015 Annals of Surgical Treatment and Research(ASRT) Vol.88 No.5

        Purpose: Acute renal graft rejection can only be definitively diagnosed by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Micro-CT is widely used in preclinical studies of small animals. Here, we propose micro-CT could noninvasively monitor and evaluate renal location and function in a mouse kidney transplant model. Methods: Orthotopic kidney transplantation was performed in a BALB/c -to- C57BL/6j or C57BL/6j-to- C57BL/6j mouse model. After optimizing imaging techniques, five mice were imaged with micro-CT and the findings were verified histologically. Results: Micro-CT can monitor and evaluate renal location and function after orthotopic kidney transplantation. There were no mice deaths while renal transplants were failure. Conclusion: We propose that graft micro-CT imaging is a new option that is noninvasive and specific, and can aid in early detection and follow-up of acute renal rejection. This method is potentially useful to improve posttransplant rejection monitoring.

      • KCI등재

        Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)

        Jiangang Chen,Zhongqing Su,Li Cheng,De-an Ta 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.48 No.4

        Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery,modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/λ<1 for HVG mode and RoC/λ<2 for LVG mode (RoC/λ: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.

      • KCI등재

        The Shocks in the Interbank Market: An Analysis of China and the US

        Jiangang Peng,Ziwei Fei,Xiaoquan Jiang,Li Zeng 한국증권학회 2015 Asia-Pacific Journal of Financial Studies Vol.44 No.6

        We compare the contagion risk in the interbank market between China and the United States during the period from 2011 to 2013. Applying simulation method, we find that the conta- gion risk of an individual bank shock in the US interbank market is relatively lower than that in China during the period. For a group bank shock, we find that the group with the lowest capital adequacy ratio in China induces a serious contagion, while the group with the highest concentration degree in the US induces a mild contagion. One potential reason is that the additional capital of most commercial banks in China is relatively lower than that of the US and most banks in China highly depend on the interbank market for acquiring liquidity or income.

      • The medium coupling effect on propagation of guided waves in engineering structures and human bone phantoms

        Chen, Jiangang,Su, Zhongqing,Cheng, Li Techno-Press 2012 Coupled systems mechanics Vol.1 No.4

        As a result of the medium coupling, propagation characteristics of ultrasonic waves guided by a multi-phase medium can be different from those in a homogeneous system. This phenomenon becomes prominent for a medium consisting of phases with considerably distinct material and physical properties (e.g., submerged structures or human bones covered with soft tissues). In this study, the coupling effect arising from both fluid and soft tissues on wave propagation in engineering structures and human bone phantoms, respectively, was explored and calibrated quantitatively, with a purpose of enhancing the precision of ultrasonic-wave-based non-destructive evaluation (NDE) and clinical quantitative ultrasound (QUS). Calibration results were used to rectify conventional NDE during evaluation of corrosion in a submerged aluminium plate, and QUS during prediction of simulated healing status of a mimicked bone fracture. The results demonstrated that with the coupling effect being appropriately taken into account, the precision of NDE and QUS could be improved.

      • SCIESCOPUS

        Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)

        Chen, Jiangang,Su, Zhongqing,Cheng, Li,Ta, De-An Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.48 No.4

        Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery, modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/${\lambda}$ <1 for HVG mode and RoC/${\lambda}$ <2 for LVG mode (RoC/${\lambda}$: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.

      • Impact of AhR, CYP1A1 and GSTM1 Genetic Polymorphisms on TP53 R273G Mutations in Individuals Exposed to Polycyclic Aromatic Hydrocarbons

        Gao, Meili,Li, Yongfei,Xue, Xiaochang,Long, Jiangang,Chen, Lan,Shah, Walayat,Kong, Yu Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.6

        This study was to undertaken to investigate the impacts of AhR, CYP1A1, GSTM1 genetic polymorphisms on the R273G mutation in exon 8 of the tumor suppressor p53 gene (TP53) among polycyclic aromatic hydrocarbons (PAHs) exposed to coke-oven workers. One hundred thirteen workers exposed to PAH and 82 control workers were recruited. We genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and TP53 R273G mutation in blood by PCR methods, and determined the levels of 1-hydroxypyrene as PAH exposure marker in urine using the high pressure liquid chromatography assay. We found that the distribution of alcohol users and the urinary excretion of 1-OHP in the exposed workers were significantly higher than that of the control workers (p=0.004, p<0.001, respectively). Significant differences were observed in the p53 genotype distributions of smoking subjects (p=0.01, 95%CI: 1.23-6.01) and PAH exposure (p=0.008, 95%CI: 1.24-4.48), respectively. Further, significant differences were observed in the p53 exon 8 mutations for the genetic polymorphisms of Lys/Arg for AhR (p=0.02, 95%CI: 0.70-15.86), Val/Val for CYP1A1 (p=0.04, 95%CI: 0.98-19.09) and null for GSTM1 (p=0.02, 95%CI: 1.19-6.26), respectively. Our findings indicated that polymorphisms of PAH metabolic genes, such as AhR, CYP1A1, GSTM1 polymorphisms may interact with p53 genetic variants and may contribute to PAH related cancers.

      • Study on load distribution ratio of composite pre-tightened tooth joint by shear nonlinearity

        Yifeng Gao,Fei Li,Qilin Zhao,Jiangang Gao,Lin Shi,Zhiqin Zhao 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.40 No.5

        Load distribution has a great influence on the mechanical properties of composite pre-tightened multi-tooth connection. To obtain the load distribution mechanism of composite pre-tightened multi-tooth joints, the multi-tooth joints were studied by experimental and theoretical methods. First, an experimental study was conducted on three-tooth specimens with different tooth depths and tooth lengths, and the failure mode, bearing capacity and load distribution mechanism of the specimens were obtained. Then, based on the nonlinear constitutive of interlaminar shear, an analytical model for load distribution of composite pre-tightened multi-tooth joint was proposed to research the multi-tooth load distribution mechanism. Finally, the theoretical and experimental results were compared. The research showed: (1) The theoretical results of the multi-tooth load distribution ratio were in good agreement with that of the experimental results, the maximum error between the theoretical value and the experimental value of the three-tooth joint was 17.44%, and the minimum error was only 2.35%; (2) The load distribution ratio of composite pre-tightened multi-tooth was uneven, for three-tooth joints, the values of load distribution ratio from large to small were: the first tooth, the third tooth and the second tooth.; (3) Multi-tooth load distribution ratio changed with the change of external load. The change of load distribution ratio was obvious in the early stage of loading, and tended to be gentle in the later stage of loading.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼