RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design and performance analysis of smart photonic sensors for industrial applications

        S Poonguzhali,Sivasangari A.,Ajitha P.,Lalithakumari S.,Sridevi A.,Danasegaran Sathish Kumar 한국물리학회 2022 Current Applied Physics Vol.39 No.-

        Toxic gas has a median fatal concentration in the oxygen of much more than 200 parts per million (ppm) but far less than 2000 ppm by volume of gas. Many industries, mines and thermal plants emit perilous gases that are more harmful to our human life. The Proposed nanosensor senses the various perilous gases and averts many accidents. In this paper, a two-dimensional Photonic Crystal (2D-PhC) resonator and PhC-based poisonous gas sensor based on the hexagonal and square crystal lattice are built-in smart way. The PhCs are artificial constructs of any material with an occasional enunciation of refractive index (RI). It has effective light manipulation and it would be helpful to obtain light migration in the handling of sensing applications. The TE/TM wave transmission can shift as per the RI value of different gases in the PhCs. The wavelength variations obtained agree well with the Finite Difference Time Domain (FDTD) study, and the simulation is performed by the tool RSoft. The spectral variables such as quality factor (QF), sensitivity (Se), transmitted output power and detection limit (DL) are evaluated using the RI value over the spectrum of different toxic gases. The proposed square crystal structure have acquired a QF range of 500.6, high efficiency of 99%, and a better Se of 716.6 nm/RIU at 1502 nm. The designed hexagonal crystal structure have acquired a QF range of 165.8, high efficiency of 99%, and a better Se of 798.24 nm/RIU at 1630 nm respectively. The DL for both the proposed sensors is very low. So, the designed smart sensor helps promptly recognize the contaminated gases in several places. The proposed nanosensor is helpful in industrial safety, health care applications, aerospace, agricultural, transportation, environmental monitoring, thermal plants and mines.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼