RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        S6K1 Negatively Regulates TAK1 Activity in the Toll-Like Receptor Signaling Pathway

        Kim, So Yong,Baik, Kyung-Hwa,Baek, Kwan-Hyuck,Chah, Kyong-Hwa,Kim, Kyung Ah,Moon, Gyuyoung,Jung, Eunyu,Kim, Seong-Tae,Shim, Jae-Hyuck,Greenblatt, Matthew B.,Chun, Eunyoung,Lee, Ki-Young American Society for Microbiology 2014 Molecular and cellular biology Vol.34 No.3

        <P>Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a key regulator in the signals transduced by proinflammatory cytokines and Toll-like receptors (TLRs). The regulatory mechanism of TAK1 in response to various tissue types and stimuli remains incompletely understood. Here, we show that ribosomal S6 kinase 1 (S6K1) negatively regulates TLR-mediated signals by inhibiting TAK1 activity. S6K1 overexpression causes a marked reduction in NF-κB and AP-1 activity induced by stimulation of TLR2 or TLR4. In contrast, S6K1<SUP>−/−</SUP> and S6K1 knockdown cells display enhanced production of inflammatory cytokines. Moreover, S6K1<SUP>−/−</SUP> mice exhibit decreased survival in response to challenge with lipopolysaccharide (LPS). We found that S6K1 inhibits TAK1 kinase activity by interfering with the interaction between TAK1 and TAB1, which is a key regulator protein for TAK1 catalytic function. Upon stimulation with TLR ligands, S6K1 deficiency causes a marked increase in TAK1 kinase activity that in turn induces a substantial enhancement of NF-κB-dependent gene expression, indicating that S6K1 is negatively involved in the TLR signaling pathway by the inhibition of TAK1 activity. Our findings contribute to understanding the molecular pathogenesis of the impaired immune responses seen in type 2 diabetes, where S6K1 plays a key role both in driving insulin resistance and modulating TLR signaling.</P>

      • Salt-Inducible Kinases 1 and 3 Negatively Regulate Toll-Like Receptor 4-Mediated Signal

        Yong Kim, So,Jeong, Sookyung,Chah, Kyong-Hwa,Jung, Eunyu,Baek, Kwan-Hyuck,Kim, Seong-Tae,Shim, Jae-Hyuck,Chun, Eunyoung,Lee, Ki-Young The Endocrine Society 2013 Molecular endocrinology Vol.27 No.11

        <P>Salt-inducible kinases (SIKs) are a family of related serine-threonine kinases and are involved in controlling various metabolisms such as liver glucose homeostasis, hepatic lipogenesis, steroidogenesis, and adipogenesis. Here we investigated the regulatory role of SIK proteins in Toll-like receptor 4 (TLR4)-mediated signaling. Overexpression of SIK1 and SIK3, but not SIK2, significantly inhibited nuclear factor-κB activity in response to lipopolysaccharide stimulation and affected the expression of proinflammatory cytokines. In contrast, both SIK1<SUP>KD</SUP> and SIK3<SUP>KD</SUP> Raw 264.7 cells exhibit dramatic elevations of nuclear factor-κB activation and activations of downstream signaling molecules, such as TGF-β-activated kinase 1, p38, and c-Jun N-terminal kinase, in response to TLR4 stimulation, indicating that SIK1 and SIK3 are negatively involved in the TLR4-mediated signaling. Through biochemical studies, we found that SIK1 and SIK3 interact with TGF-β-activated kinase 1-binding protein 2 (TAB2), and interrupt the functional complex of TAB2-TNF receptor-associated factor 6 (TRAF6). Interestingly, the molecular interruption is induced to suppress the ubiquitination of TRAF6 in response to TLR4 stimulation. These result suggest that SIK1 and SIK3 negatively regulate TLR4-mediated signaling through the interruption of TAB2-TRAF6 complex and thereby the inhibition of ubiquitination of TRAF6. The present findings can be useful for a better understanding of multilevel interactions between the metabolic and immune systems.</P>

      • KCI등재

        Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta)

        한종원,Kang Sup Yoon,Min Gui Jung,Kyong-Hwa Chah,김광훈 한국조류학회I 2012 ALGAE Vol.27 No.1

        A novel lectin specific to N-acetyl-D-galactosamine as well as N-acetyl-D-glucosamine was isolated from Bryopsis plumosa and named as BPL-4. Sodium dodecyl sulfate polyacrylamide gel electrophorese (SDS-PAGE) and matrix-assisted laser desorption / ionization-time of flight (MALDI-TOF) mass spectrometry data showed that this lectin was a monomeric protein with molecular weight 12.9 kDa. The N-terminal amino acid sequences of the lectin were determined by Edman degradation and the full cDNA sequence encoding this lectin was obtained using the degenerate primers designed from the amino acid sequence. The size of the cDNA was 414 bp containing single open reading frame (ORF) encoding the lectin precursor. The homology analysis showed that this lectin might belong to H lectin group. BPL-4 showed high sequence similarity (60.6%) to BPL-3, which is a previously reported lectin from the same species. The comparative analysis on the lectin’s primary structure showed two conserved domains including one possible active domain of H lectin group.

      • SCIESCOPUSKCI등재

        Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta)

        Han, Jong-Won,Yoon, Kang-Sup,Jung, Min-Gui,Chah, Kyong-Hwa,Kim, Gwang-Hoon The Korean Society of Phycology 2012 ALGAE Vol.27 No.1

        A novel lectin specific to N-acetyl-D-galactosamine as well as N-acetyl-D-glucosamine was isolated from Bryopsis plumosa and named as BPL-4. Sodium dodecyl sulfate polyacrylamide gel electrophorese (SDS-PAGE) and matrix-assisted laser desorption / ionization-time of flight (MALDI-TOF) mass spectrometry data showed that this lectin was a monomeric protein with molecular weight 12.9 kDa. The N-terminal amino acid sequences of the lectin were determined by Edman degradation and the full cDNA sequence encoding this lectin was obtained using the degenerate primers designed from the amino acid sequence. The size of the cDNA was 414 bp containing single open reading frame (ORF) encoding the lectin precursor. The homology analysis showed that this lectin might belong to H lectin group. BPL-4 showed high sequence similarity (60.6%) to BPL-3, which is a previously reported lectin from the same species. The comparative analysis on the lectin's primary structure showed two conserved domains including one possible active domain of H lectin group.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼