RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Eff ectiveness of Soil–Structure Interaction and Dynamic Characteristics on Cable-Stayed Bridges Subjected to Multiple Support Excitation

        Şevket Ateş,Zeliha Tonyali,Kurtuluş Soyluk,Adamou Marou Seyni Samberou 한국강구조학회 2018 International Journal of Steel Structures Vol.18 No.2

        The purpose of the study is to determine the eff ects of multiple support excitations (MSE) and soil–structure interaction (SSI) on the dynamic characteristics of cable-stayed bridges founded on pile foundation groups. In the design of these structures, it is important to consider the eff ects of spatial variability of earthquake ground motions. To do this, the time histories of the ground motions are generated based on the spatially varying ground motion components of incoherence, wave-passage, and site-response. The eff ects of SSI on the response of a bridge subjected to the MSE are numerically illustrated using a three-dimensional model of Quincy Bayview cable-stayed bridge in the USA. The soil around the pile is linearly elastic, homogeneous isotropic half space represented by dynamic impedance functions based on the Winkler model of soil reaction. Structural responses obtained from the dynamic analysis of the bridge system show the importance of the SSI and the MSE eff ects on the dynamic responses of cable-stayed bridges.

      • KCI등재

        Multi-point response spectrum analysis of a historical bridge to blast ground motion

        Kemal Hacıefendioğlu,Swagata Banerjee,Kurtuluş Soyluk,Olgun Köksal 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.53 No.5

        In this study, the effects of ground shocks due to explosive loads on the dynamic response of historical masonry bridges are investigated by using the multi-point shock response spectrum method. With this purpose, different charge weights and distances from the charge center are considered for the analyses of a masonry bridge and depending on these parameters frequency-varying shock spectra are determined and applied to each support of the two-span masonry bridge. The net blast induced ground motion consists of air-induced and direct-induced ground motions. Acceleration time histories of blast induced ground motions are obtained depending on a deterministic shape function and a stationary process. Shock response spectrums determined from the ground shock time histories are simulated using BlastGM software. The results obtained from uniform and multi-point response spectrum analyses cases show that significant differences take place between the uniform and multi-point blast-induced ground motions.

      • KCI등재

        Stochastic response of suspension bridges for various spatial variability models

        Ahmet C. Altunışık,Süleyman Adanur,Kurtuluş Soyluk,A. Aydın Dumanoğlu 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.22 No.5

        The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.

      • KCI등재

        Wave-Passage Effect on the Seismic Response of Suspension Bridges Considering Local Soil Conditions

        Süleyman Adanur,Ahmet Can Altunışık,Hasan Basri Başağa,Kurtuluş Soyluk,A. Aydın Dumanoğlu 한국강구조학회 2017 International Journal of Steel Structures Vol.17 No.2

        In this study, a comprehensive investigation of the stochastic analysis of a suspension bridge subjected to spatially varying ground motions is carried out for variable local soil cases and wave velocities. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The incoherence effect is examined by taking into account Harichandran and Vanmarcke model, the site-response effect is outlined by using firm, medium and soft soil types, and the wave-passage effect is investigated by using 1000-2000, 500-1000, and 300-500 m/s wave velocities for the firm, medium and soft soils, respectively. Mean of maximum response values obtained from the spatially varying ground motions are compared with those of the specialized cases of the ground motion model. At the end of the study, it is seen that total displacements are dominated by dynamic component. The response values obtained for SMFF soil condition are generally the largest. When the varying local soil condition is considered, the variation of relative contributions of response components to the total response values for varying wave velocity cases is insignificant. Also, the variation of the wave velocity has important effect on the deck and towers total response values as compared with those of the constantly travelling wave velocity case. It is concluded that the site-response effect of ground motion on the response of suspension bridges is more important than that of the wave-passage, and the variation of the wave velocities depending on the local soil conditions, has important effects on the dynamic behavior of suspension bridge.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼