RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Review : Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

        ( Kunjupillai Vijayan ) 한국잠사학회 2005 International Journal of Industrial Entomology Vol.10 No.2

        Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

      • KCI등재

        Molecular Markers and Their Application in Mulberry Breeding

        Vijayan, Kunjupillai Korean Society of Sericultural Science 2007 International Journal of Industrial Entomology Vol.15 No.2

        Mulberry (Morus spp.) is an economically important tree crop being cultivated in India, China and other sericulturally important countries for its foliage to feed the silk producing insect Bombyx mori L. Genetic improvements of mulberry lag behind to the same in many other economically less important crops due to the complexity of its genetics, the breeding behavior, and the lack of basic information on factors governing important agronomic traits. In this review, the general usage and advantages of different molecular markers including isoenzymes, RFLPs, RAPDs, ISSRs, SSRs, AFLPs and SNPs are described to enlighten their applicability in mulberry genetic improvement programs. Application of DNA markers in germplasm characterization, construction of genetic linkage maps, QTL identification and in marker-assisted selection was also described along with its present status and future prospects.

      • KCI등재

        Single Nucleotide Polymorphisms (SNPs) for Advanced Genomic Research in Sericulture

        Vijayan, Kunjupillai Korean Society of Sericultural Science 2009 International Journal of Industrial Entomology Vol.19 No.1

        Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in the genome of any organism. Owing to their greater abundance, they are considered useful for identifying cultivars, construction of higher density linkage maps, and detection of genes (QTLs) associated with complex agronomic traits and diseases. Although, SNPs have been used recently for constructing a high density genetic map in silkworm and a set of 118 SNPs have been identified in tasar silkworms, not much progress has been made in sericulture to utilize the vast potential of SNPs. Thus, this review mainly focuses on some of the important methods of SNP discovery, validation and genotyping. Emphasis has also been given to the possible uses of SNP genotyping in the improvement of silkworms and their host plants.

      • KCI등재

        Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

        Vijayan Kunjupillai Korean Society of Sericultural Science 2005 International Journal of Industrial Entomology Vol.10 No.2

        Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

      • KCI등재후보

        Combining Ability for Morphological and Biochemical Characters in Mulberry (Morns spp.) under Salinity Stress

        Vijayan, Kunjupillai,Chakraborti, Shyama Prasad,Doss, Subramaniam Gandhi,Ghosh, Partha Deb,Ercisli, Sezai Korean Society of Sericultural Science 2008 International Journal of Industrial Entomology Vol.16 No.2

        A line x tester analysis was carried out in mulberry (Morns spp.) under different salinity levels to determine the changes in the genetic interaction of various morpho-biochemical characters. Five mulberry genotypes, 3 females and 2 males, differing in salt tolerance were selected for the study. Clones of these parents along with clones of the F1 hybrids were planted in earthen pots and subjected to different levels of salinity (0.0%, 0.25%, 0.50%, 0.75% and 1.00% NaCl). Data on morphological and biochemical characters were subjected to line x tester analysis. The result revealed significant variation among the parents studied. The prominence of non-additive gene effect under control condition suggests the need for well chalked out breeding program to exploit the non-fixable variance of components for improvement of plant height, leaf size and leaf yield, chlorophyll and photosynthesis in mulberry. However, under salinity stress a shift from non-additive gene effect to additive gene effect for the above said character further suggests the need for a change in breeding strategy. The general combining ability (GCA) analysis has identified English black as the best combiner among the parents and the specific combining ability analysis (SCA) found crosses of English black X C776 and Rotndiloba x Mandalaya were good for Plant height and leaf size and English black X C776 and Rotundiloba x C776 were good for biochemical proline and chlorophyll. From the performance of parents and their crosses under different salinity levels and also under normal cultural conditions it is concluded that in mulberry different approaches are required to develop varieties for the irrigated and saline conditions.

      • KCI등재후보

        Review : Single Nucleotide Polymorphisms (SNPs) for Advanced Genomic Research in Sericulture

        Kunjupillai Vijayan 한국잠사학회 2009 International Journal of Industrial Entomology Vol.19 No.1

        Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in the genome of any organism. Owing to their greater abundance, they are considered useful for identifying cultivars, construction of higher density linkage maps, and detection of genes (QTLs) associated with complex agronomic traits and diseases. Although, SNPs have been used recently for constructing a high density genetic map in silkworm and a set of 118 SNPs have been identified in tasar silkworms, not much progress has been made in sericulture to utilize the vast potential of SNPs. Thus, this review mainly focuses on some of the important methods of SNP discovery, validation and genotyping. Emphasis has also been given to the possible uses of SNP genotyping in the improvement of silkworms and their host plants.

      • KCI등재후보

        Research Articles : Combining Ability for Morphological and Biochemical Characters in Mulberry (Morus spp.) under Salinity Stress

        ( Kunjupillai Vijayan ),( Shyama Prasad Chakraborti ),( Subramaniam Gandhi Doss ),( Partha Deb Ghosh ),( Sezai Ercisli ) 한국잠사학회 2008 International Journal of Industrial Entomology Vol.16 No.2

        A line x tester analysis was carried out in mulberry (Morus spp.) under different salinity levels to determine the changes in the genetic interaction of various morpho-biochemical characters. Five mulberry genotypes, 3 females and 2 males, differing in salt tolerance were selected for the study. Clones of these parents along with clones of the F1 hybrids were planted in earthen pots and subjected to different levels of salinity (0.0%, 0.25%, 0.50%, 0.75% and 1.00% NaCl). Data on morphological and biochemical characters were subjected to line x tester analysis. The result revealed significant variation among the parents studied. The prominence of non-additive gene effect under control condition suggests the need for well chalked out breeding program to exploit the non-fixable variance of components for improvement of plant height, leaf size and leaf yield, chlorophyll and photosynthesis in mulberry. However, under salinity stress a shift from non-additive gene effect to additive gene effect for the above said character further suggests the need for a change in breeding strategy. The general combining ability (GCA) analysis has identified English black as the best combiner among the parents and the specific combining ability analysis (SCA) found crosses of English black X C776 and Rotndiloba x Mandalaya were good for Plant height and leaf size and English black X C776 and Rotundiloba x C776 were good for biochemical proline and chlorophyll. From the performance of parents and their crosses under different salinity levels and also under normal cultural conditions it is concluded that in mulberry different approaches are required to develop varieties for the irrigated and saline conditions.

      • KCI등재후보

        Review : Molecular Markers and Their Application in Mulberry Breeding

        ( Kunjupillai Vijayan ) 한국잠사학회 2007 International Journal of Industrial Entomology Vol.15 No.2

        Mulberry (Morus spp.) is an economically important tree crop being cultivated in India, China and other sericulturally important countries for its foliage to feed the silk producing insect Bombyx mori L. Genetic improvements of mulberry lag behind to the same in many other economically less important crops due to the complexity of its genetics, the breeding behavior, and the lack of basic information on factors governing important agronomic traits. In this review, the general usage and advantages of different molecular markers including isoenzymes, RFLPs, RAPDs, ISSRs, SSRs, AFLPs and SNPs are described to enlighten their applicability in mulberry genetic improvement programs. Application of DNA markers in germplasm characterization, construction of genetic linkage maps, QTL identification and in marker-assisted selection was also described along with its present status and future prospects.

      • KCI등재후보

        Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

        Vijayan, Kunjupillai,Singh, Ravindra Nath,Saratchandra, Beera Korean Society of Sericultural Science 2010 International Journal of Industrial Entomology Vol.20 No.2

        The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

      • KCI등재후보

        Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

        ( Kunjupillai Vijayan ),( Ravindra Nath Singh ),( Beera Saratchandra ) 한국잠사학회 2010 International Journal of Industrial Entomology Vol.20 No.2

        The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called eco-race or ecotypes. Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼