RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Reaction Centre Quenching of Excess Light Energy and Photoprotection of Photosystem 2

        ( Alexander G. Ivanov ),( Vaughan Hurry ),( Prafullachandra V. Sane ),( Gunnar Oquist ),( Norman P. A. Huner ) 한국식물학회 2008 Journal of Plant Biology Vol.51 No.2

        In addition to the energy dissipation of excess light occurring in PSII antenna via the xanthophyll cycle, there is mounting evidence of a zeaxanthin-independent pathway for non-photochemical quenching based within the PSII reaction centre (reaction centre quenching) that may also play a significant role in photoprotection. It has been demonstrated that acclimation of higher plants, green algae and cyanobacteria to low temperature or high light conditions which potentially induce an imbalance between energy supply and energy utilization is accompanied by the development of higher reduction state of QA and higher resistance to photoinhibition (Huner et al., 1998). Although this is a fundamental feature of all photoautotrophs, and the acquisition of increased tolerance to photoinhibition has been ascribed to growth and development under high PSII excitation pressure, the precise mechanism controlling the redox state of QA and its physiological significance in developing higher resistance to photoinhibition has not been fully elucidated. In this review we summarize recent data indicating that the increased resistance to high light in a broad spectrum of photosynthetic organisms acclimated to high excitation pressure conditions is associated with an increase probability for alternative non-radiative P680+QA- radical pair recombination pathway for energy dissipation within the reaction centre of PSII. The various molecular mechanisms that could account for non-photochemical quenching through PSII reaction centre are also discussed.

      • KCI등재

        Characterization of Thermally Oxidized Ti6Al7Nb Alloy for Biological Applications

        Huseyin Cimenoglu,Onur Meydanoglu,Murat Baydogan,Hakan Bermek,Pinar Huner,E. Sabri Kayali 대한금속·재료학회 2011 METALS AND MATERIALS International Vol.17 No.5

        Wear and biological performances of a thermally oxidized Ti6Al7Nb alloy were investigated. Thermal oxidation (TO) performed at 600 °C for 60 h in air formed a 0.6 μm thick and relatively rough (having an average surface roughness of 1.1 μm) oxide layer (OL) on the surface. The OL was identified as the rutile form of TiO_2 and there was an oxygen diffusion zone (ODZ) with an average thickness of 5 μm just beneath it. The applied TO process resulted in more than ten-fold increase in wear resistance in a simulated body fluid (SBF) solution. Additionally, the biological performance was also enhanced as revealed by SBF immersion and cell culture tests.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼