RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prostaglandin A₂-induced Apoptosis is Not Inhibited by Heme Oygenase-1 in U2OS Cells

        Kyoung-Won Ko(고경원),Sun-Young Lee(이선영),Ji-Hyun Ahn(안지현),Jaetaek Kim(김재택),In-Kyung Kim(김인경),Ho-Shik Kim(김호식) 한국생명과학회 2008 생명과학회지 Vol.18 No.11

        Prostaglandin A₂ (PGA₂)는 사람 골육종 세포인 U2OS 세포주에서 apoptosis와 heme oxygenase (HO)-1의 발현을 함께 유도하였다. PGA₂에 의한 apoptosis는 HO-1의 과도한 발현이나 HO-1에 대한 small interfering RNA에 의한 발현저하에 의하여 변동되지 않았으나 H₂O₂에 의한 세포사망은 HO-1의 발현 수준에 반비례하여 변동되었다. 또한 thiol antioxidant인 N-acetyl-L-cysteine (NAC)은 PGA₂에 의한 세포사망과 HO-1의 발현 증가를 모두 차단하였지만, non-thiol antioxidant인 butylated hydroxyanisole (BHA)과 ascorbic acid는 세포사망과 HO-1의 발현 유도를 차단하지 않았다. 이와 같은 결과들은 PGA₂는 산화성 손상에 의해서가 아니라 PGA₂의 thiol-reactivity에 의하여 apoptosis와 HO-1의 발현을 유도하며, HO-1의 발현은 PGA₂에 의한 apoptosis와는 독립적인 현상이거나 기능적으로 apoptosis 유도의 하부에 위치하고 apoptosis의 진행에는 기여하지 않을 것이라는 것을 시사해 준다. Prostaglandin A₂ (PGA₂), one of cyclopentenone PGs, induced both apoptosis and heme oxygenase (HO)-1 expression in U2OS cells. PGA₂-induced apoptosis was not perturbed by either over-expression or knock-down of HO-1, whereas H₂O₂-induced cell death was inversely modulated by the expression level of HO-1. In addition, N-acetyl-L-cysteine (NAC), a thiol antioxidant, blocked both apoptosis and HO-1 expression induced by PGA₂. But, non-thiol antioxidants like butylated hydorxyanisole (BHA) and ascorbic acid did not block either apoptosis or HO-1-induction. Taken together, these results suggest that PGA₂ induces both apoptosis and HO-1 expression, which are critically related to the thiol-reactivity of PGA₂, but not oxidative stress, and HO-1 expression may be independent or functionally located downstream of apoptosis by PGA₂ without contribution to apoptosis progression.

      • SCISCIESCOPUS

        Heme oxygenase-1 induced by desoxo-narchinol-A attenuated the severity of acute pancreatitis via blockade of neutrophil infiltration

        Bae, Gi-Sang,Kim, Dong-Goo,Jo, Il-Joo,Choi, Sun-Bok,Kim, Myoung-Jin,Shin, Joon Yeon,Kim, Dong-Uk,Song, Ho-Joon,Joo, Myungsoo,Park, Sung-Joo ELSEVIER 2019 INTERNATIONAL IMMUNOPHARMACOLOGY Vol.69 No.-

        <P><B>Abstract</B></P> <P>Heme oxygenase-1 (HO-1) has an anti-inflammatory action in acute pancreatitis (AP). However, its mechanism of action and natural compounds/drugs to induce HO-1 in pancreas are not well understood. In this study, we investigated the regulatory mechanisms of HO-1 during AP using desoxo-narchinol-A (DN), the natural compound inducing HO-1 in the pancreas. Female C57/BL6 Mice were intraperitoneally injected with supramaximal concentrations of cerulein (50 μg/kg) hourly for 6 h to induce AP. DMSO or DN was administered intraperitoneally, then mice were sacrificed 6 h after the final cerulein injection. Administration of DN increased pancreatic HO-1 expression through activation of activating protein-1, mediated by mitogen-activated protein kinases. Furthermore, DN treatment reduced the pancreatic weight-to-body weight ratio as well as production of digestive enzymes and pro-inflammatory cytokines. Inhibition of HO-1 by tin protoporphyrin IX abolished the protective effects of DN on pancreatic damage. Additionally, DN treatment inhibited neutrophil infiltration into the pancreas via regulation of chemokine (C-X-C motif) ligand 2 (CXCL2) by HO-1. Our results suggest that DN is an effective inducer of HO-1 in the pancreas, and that HO-1 regulates neutrophil infiltration in AP via CXCL2 inhibition.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Desoxo-narchinol-A (DN) is a natural compound of HO-1 inducer in pancreas. </LI> <LI> Mechanism of DN-induced HO-1 is mediated by MAPK/Activator Protein-1/HO-1 signaling. </LI> <LI> DN-induced HO-1 blocks neutrophil infiltration into pancreas via inhibition of CXCL2. </LI> <LI> DN inhibits cerulein-induced acute pancreatitis (AP) and AP-associated lung injury. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Combined Gene Therapy with Hypoxia-Inducible Factor-1α and Heme Oxygenase-1 for Therapeutic Angiogenesis

        Bhang, Suk Ho,Kim, Ju Hee,Yang, Hee Seok,La, Wan-Geun,Lee, Tae-Jin,Kim, Ga Hee,Kim, Hyun Ah,Lee, Minhyung,Kim, Byung-Soo Mary Ann Liebert 2011 Tissue engineering. Part A Vol.17 No.7

        <P>Transfection with either hypoxia-inducible factor-1α (HIF-1α) or heme oxygenase-1 (HO-1) gene can induce neovascularization in ischemic tissues. Although expression of transfected HIF-1α gene occurs rapidly, the expressed HIF-1α protein degrades quickly, limiting its therapeutic efficacy. Meanwhile, expressed HO-1 protein does not rapidly undergo degradation, but gene expression occurs a couple of days after transfection, resulting in apoptosis and a delay in angiogenesis in ischemic tissues at the incipient period of HO-1 gene transfection. We hypothesize that combined delivery of HIF-1α and HO-1 gene will enhance antiapoptosis and neovascularization in ischemic tissue compared with HIF-1α or HO-1 single-gene therapy. To test this hypothesis, ischemic mouse hindlimbs were treated with HIF-1α and/or HO-1 gene therapy. The combined gene therapy proved superior to both single-gene therapies, resulting in rapid expression of HIF-1α gene and long-term maintenance of expressed HO-1 protein. The apoptosis in the ischemic region was significantly less, and angiogenic growth factor secretion and angiogenesis were greater in the combined gene therapy than in either of the single-gene therapies. Our results suggest that a combined gene therapy of HIF-1α and HO-1 enhances the transfection of both genes and improves angiogenesis compared with either single-gene therapy.</P>

      • SCISCIESCOPUS

        Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53

        CHOE, YUN-JEONG,LEE, SUN-YOUNG,KO, KYUNG WON,SHIN, SEOK JOON,KIM, HO-SHIK Spandidos Publications 2014 International journal of oncology Vol.44 No.3

        A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-alpha, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin-3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-beta, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-beta reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.

      • KCI등재

        PGA2-induced expression of HO-1 is mediated by transcriptional upregulation of Nrf2

        Sang-sun Lee,Yun-Jeong Choe,Hyein Lee,Sun-Young Lee,Ho-Shik Kim 대한독성 유전단백체 학회 2019 Molecular & cellular toxicology Vol.15 No.2

        Backgrounds: Prostaglandin (PG) A2 reportedly stimulated expression of heme oxygenase (HO)-1 at the level of transcription via the activation of p38MAPK. Details of the mechanism, however, have not been provided, and this includes identification of the transcription factors responsible for PGA2-induced HO-1 expression. Herein is described an analysis of the role of nuclear factor erythroid 2 related factor 2 (Nrf2) and how PGA2 increases the activity of Nrf2 during PGA2-induced HO-1 expression. Methods: Expressions of HO-1 and Nrf2 were analyzed at the levels of both mRNA and protein. Nrf2 siRNA, SB203580, an inhibitor of p38MAPK, and scavengers of reactive oxygen species (ROS) were used to identify the effects of Nrf2, p38MAPK and ROS on PGA2-induced HO-1 expression. Results: Although SB203580 suppressed PGA2-induced HO-1 expression, genetic activation of p38MAPK could not stimulate the transcription of HO-1. Cycloheximide (CHX), an inhibitor of protein translation, almost completely prevented PGA2-induced increase of HO-1 transcription, but it did not prevent the phosphorylation of p38MAPK, which suggests that both de novo protein synthesis and p38MAPK activity are required to induce the transcription of HO-1 in response to PGA2 treatment. In addition, PGA2 increased the level of both Nrf2 mRNA and protein in a dose-dependent manner. Knockdown of Nrf2 using small interfering RNA (siRNA) suppressed PGA2-induced HO-1 expression. The PGA2-induced transcription of Nrf2 was prevented by ROS scavengers such as n-acetyl-l-cysteine and tempol but not CHX. Furthermore, siRNA against p38MAPK did not change the level of nuclear Nrf2 protein. Conclusion: These findings suggest that PGA2 induces HO-1 transcription via an increase in Nrf2 protein, the transcription of which is initiated by an accumulation of ROS that is independent of the p38MAPK activation pathway.

      • KCI등재

        PGA2 induces the expression of HO-1 by activating p53 in HCT116 cells

        Hyein Lee,Sang-Sun Lee,Ji-Young Park,Yun-Jeong Choe,이선영,Ho-Shik Kim,H.-S. Kim 대한독성 유전단백체 학회 2017 Molecular & cellular toxicology Vol.13 No.2

        Prostaglandin (PG) A2 which is a cytotoxic PG, was reported to induce the expression of heme oxygenase (HO)-1 via activation of p38MAPK to keep U2OS cells from cell cycle arrest in G2M phase. The expression of HO-1 is primarily regulated at the level of transcription. But the transcription factors that are responsible for PGA2-induced HO-1 expression were not clarified yet. Here, we report that PGA2-induced transcription of HO-1 is mediated by p53, a tumor suppressive transcription factor. In HCT116 cells, PGA2 treatment led to the phosphorylation of p53 and an increase of p21WAF1 transcription as well as the activation of HO-1 transcription. Knocking p53 down via RNA interference or inhibiting the p53’s transcriptional activity by pifithrin-α treatment led to suppression of the increase in the level of both HO-1 expression and activity of HO-1 promoter. Pretreatment of NU- 7441, a chemical inhibitor of DNA-activated protein kinase (DNA-PK), prevented both the PGA2-induced phosphorylation of p53 and an increase of HO-1 transcription. In addition, N-acetyl-l-cysteine, a scavenger of reactive oxygen species (ROS), also mimicked the effect of NU-7441 on the PGA2-induced activation of p53 and HO-1 transcription. Collectively, these results suggest that PGA2 induces the expression of HO-1 via activation of p53, which is mediated by the ROSDNA- PK pathway.

      • Hypoxia-Responsive MicroRNA-101 Promotes Angiogenesis <i>via</i> Heme Oxygenase-1/Vascular Endothelial Growth Factor Axis by Targeting Cullin 3

        Kim, Ji-Hee,Lee, Kwang-Soon,Lee, Dong-Keon,Kim, Joohwan,Kwak, Su-Nam,Ha, Kwon-Soo,Choe, Jongseon,Won, Moo-Ho,Cho, Byung-Ryul,Jeoung, Dooil,Lee, Hansoo,Kwon, Young-Guen,Kim, Young-Myeong Mary Ann Liebert 2014 Antioxidants & redox signaling Vol.21 No.18

        <P>Aims: Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression. Results: We found that hypoxia induced miR-101, which binds to the 3 ' untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor erythroid-derived 2-related factor 2 (Nrf2) via inhibition of the proteasomal degradation pathway. miR-101 overexpression promoted Nrf2 nuclear accumulation, which was accompanied with increases in HO-1 induction, VEGF expression, and endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. The elevated NO-induced S-nitrosylation of Kelch-like ECH-associated protein 1 and subsequent induction of Nrf2-dependent HO-1 lead to further elevation of VEGF production via a positive feedback loop between the Nrf2/HO-1 and VEGF/eNOS axes. Moreover, miR-101 promoted angiogenic signals and angiogenesis both in vitro and in vivo, and these events were attenuated by inhibiting the biological activity of HO-1, VEGF, or eNOS. Moreover, these effects were also observed in aortic rings from HO-1(+/-) and eNOS(-/-) mice. Local overexpression of miR-101 improved therapeutic angiogenesis and perfusion recovery in the ischemic mouse hindlimb, whereas antagomiR-101 diminished regional blood flow. Innovation: Hypoxia-responsive miR-101 stimulates angiogenesis by activating the HO-1/VEGF/eNOS axis via Cul3 targeting. Thus, miR-101 is a novel angiomir. Conclusion: Our results provide new mechanistic insights into a functional role of miR-101 as a potential therapeutic target in angiogenesis and vascular remodeling. Antioxid. Redox Signal. 21, 2469-2482.</P>

      • SCIESCOPUSKCI등재

        Heme oxygenase-1 (HO-1)/carbon monoxide (CO) axis suppresses RANKL-induced osteoclastic differentiation by inhibiting redox-sensitive NF-κB activation

        ( Sun-uk Bak ),( Suji Kim ),( Hae-jun Hwang ),( Jung-a Yun ),( Wan-sung Kim ),( Moo-ho Won ),( Ji-yoon Kim ),( Kwon-soo Ha ),( Young-guen Kwon ),( Young-myeong Kim ) 생화학분자생물학회(구 한국생화학분자생물학회) 2017 BMB Reports Vol.50 No.2

        Heme oxygenase (HO-1) catalyzes heme to carbon monoxide (CO), biliverdin/bilirubin, and iron and is known to prevent the pathogenesis of several human diseases. We assessed the beneficial effect of heme degradation products on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL). Treatment of RAW264.7 cells with CORM-2 (a CO donor) and bilirubin, but not with iron, decreased RANKLinduced osteoclastogenesis, with CORM-2 having a more potent anti-osteogenic effect. CORM-2 also inhibited RANKLinduced osteoclastogenesis and osteoclastic resorption activity in marrow-derived macrophages. Treatment with hemin, a HO-1 inducer, strongly inhibited RANKL-induced osteoclastogenesis in wild-type macrophages, but was ineffective in HO-1<sup>+/- </sup>cells. CORM-2 reduced RANKL-induced NFATc1 expression by inhibiting IKK-dependent NF-κB activation and reactive oxygen species production. These results suggest that CO potently inhibits RANKL-induced osteoclastogenesis by inhibiting redox-sensitive NF-κB-mediated NFATc1 expression. Our findings indicate that HO-1/CO can act as an antiresorption agent and reduce bone loss by blocking osteoclast differentiation. [BMB Reports 2017; 50(2): 103-108]

      • KCI등재

        PGA2-induced HO-1 attenuates G2M arrest by modulating GADD45α expression

        Yun-Jeong Choe,고경원,Hyein Lee,이선영,Byung-Chul Kim,Ho-Shik Kim,Ho-Shik Kim 대한독성 유전단백체 학회 2015 Molecular & cellular toxicology Vol.11 No.4

        Prostaglandin (PG) A2, a cyclopentenone PG, arrested the growth of U2OS cells in the G2M phase. While inducing G2M arrest, PGA2 increased the expression of heme oxygenase-1 (HO-1) at the level of transcription along with the accumulation of ROS and the activation of MAPKs including JNK, p38MAPK, and ERK1/2. Among the MAPKs, the inhibition of p38MAPK by a specific chemical inhibitor SB203580, or by RNA interference, but not JNK or ERK1/2, attenuated the PGA2-induced transcription of HO-1. Nacetylcysteine (NAC), a ROS scavenger, prevented PGA2-induced G2M arrest, p38MAPK activation and transcriptional induction of HO-1. PGA2 also stimulated GADD45α expression at the level of transcription, and the knockdown of GADD45α repressed PGA2- induced G2M arrest. Finally, the knockdown of the HO-1 protein elevated PGA2-induced GADD45α expression as well as G2M arrest. Collectively, these results suggest that PGA2 causes an increase in ROS accumulation which initiates both HO-1 transcription via p38MAPK, and G2M arrest via GADD45α transcription, and HO-1 attenuates G2M arrest by modulating the expression of GADD45α.

      • SCOPUSKCI등재

        Clinicopathological role of kidney injury molecule-1 in immunoglobulin A nephropathy

        ( Yu Ho Lee ),( Yang-gyun Kim ),( Sang-ho Lee ),( Ju-young Moon ),( Kyung-hwan Jeong ),( Tae-won Lee ),( Chun-gyoo Ihm ) 대한신장학회 2014 Kidney Research and Clinical Practice Vol.33 No.3

        Background: Urinary kidney injury molecule-1 (KIM-1) is an early and sensitivebiomarker of acute kidney injury, but it is unclear if it is a biomarker of chronicglomerulonephritis. We evaluated whether urinary KIM-1 levels in patients withimmunoglobulin A (IgA) nephropathy can be a marker to reflect clinicopathologicalseverity and predict the prognosis. Methods: We measured urinary KIM-1 levels in 40 patients (15 males; mean age36.6712.9 years) with IgA nephropathy and 10 healthy people (5 males; mean age37.379.6 years) as controls. The correlation of urinary KIM-1 levels with patients’clinical parameters, histological grades, and follow-up data were analyzed using themodified H. S. Lee grading system and tubulointerstitial change scores. Results: Urinary KIM-1 levels were higher in patients with IgA nephropathy thanhealthy controls (P¼0.001). Univariate and multivariate regression analyses showedthat urinary KIM-1 levels had a direct correlation with H. S. Lee grade andtubulointerstitial inflammation (P¼0.004 and P¼0.011, respectively). Conclusion: In patients with IgA nephropathy, urinary KIM-1 has a significantcorrelation with histopathologic severity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼