RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A FRF-based algorithm for damage detection using experimentally collected data

        Garcia-Palencia, Antonio,Santini-Bell, Erin,Gul, Mustafa,Catbas, Necati Techno-Press 2015 Structural monitoring and maintenance Vol.2 No.4

        Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

      • SCIESCOPUS

        Fatigue experiments on steel cold-formed panels under a dynamic load protocol

        Garcia-Palencia, Antonio J.,Godoy, Luis A. Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.46 No.3

        A dynamic load protocol has been used to experimentally simulate fatigue behavior in cold-formed metal panels with screwed connections under wind loading. The specific protocol adopted is an adaptation of SIDGERS, originally developed for non-metallic membranes, which is composed of levels each under increasing load values. A total of 19 tests were performed on 3.35 m long by 0.91 m wide panels, identified as Type B-wide rib and Type E, both with screw connections at the edge and at the center, thus conforming two-span specimens. In some configurations the panels were fixed at the valleys, whereas crest-fixed connections were also investigated. Reinforcing the connections by means of washers was also investigated to evaluate their efficiency in improving fatigue capacity. The experimental results show maximum load capacities in improved connections with washers of approximately twice of those with classical connections.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼