RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets

        A.A. El Damatty,M. Abushagur,M.A. Youssef 국제구조공학회 2003 Steel and Composite Structures, An International J Vol.3 No.6

        Aging and deterioration of existing steel structures necessitate the development of simple and efficient rehabilitation techniques. The current study investigates a methodology to enhance the flexural capacity of steel beams by bonding Glass Fibre Reinforced Plastic (GFRP) sheets to their flanges. A heavy duty adhesive, tested in a previous study is used to bond the steel and the GFRP sheet. In addition to its ease of application, the GFRP sheet provides a protective layer that prevents future corrosion of the steel section. The study reports the results of bending tests conducted on a W-shaped steel beam before and after rehabilitation using GFRP sheets. Enhancement in the moment capacity of the beam due to bonding GFRP sheet is determined from the test results. A closed form analytical model that can predict the yield moment as well as the stresses induced in the adhesive and the GFRP sheets of rehabilitated steel beam is developed. A detailed finite element analysis for the tested specimens is also conducted in this paper. The steel web and flanges as well as the GFRP sheets are simulated using three-dimensional brick elements. The shear and peel stiffness of the adhesive are modeled as equivalent linear spring systems. The analytical and experimental results indicate that a significant enhancement in the ultimate capacity of the steel beam is achieved using the proposed technique. The finite element analysis is employed to describe in detail the profile of stresses and strains that develop in the rehabilitated steel beam.

      • SCIESCOPUS

        Dynamic response of transmission line conductors under downburst and synoptic winds

        Aboshosha, Haitham,El Damatty, Ashraf Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.21 No.2

        In the current study, dynamic and quasi-static analyses were performed to investigate the response of multiple-spanned and single-spanned transmission line conductors under both downburst and synoptic winds considering different wind velocities and different length spans. Two critical downburst configurations, recommended in the literature and expected to cause maximum conductor reactions, were considered in the analyses. The objective of the study was to assess the importance of including the dynamic effect when predicting the conductor's reactions on the towers. This was achieved by calculating the mean, the background and the resonant reaction components, and evaluating the contribution of the resonant component to the peak reaction. The results show that the maximum contribution of the resonant component is generally low (in the order of 6%) for the multiple-spanned system at different wind velocities for both downburst and synoptic winds. For the single-spanned system, the result show a relatively high maximum contribution (in the order of 16%) at low wind velocity and a low maximum contribution (in the order of 6%) at high wind velocity for both downburst and synoptic winds. Such contributions may justify the usage of the quasi-static approach for analyzing transmission line conductors subjected to the high wind velocities typically used for the line design.

      • SCIESCOPUS

        Finite element modelling of self-supported transmission lines under tornado loading

        Altalmas, A.,El Damatty, A.A. Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.18 No.5

        Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

      • SCIESCOPUS

        Effective technique to analyze transmission line conductors under high intensity winds

        Aboshosha, Haitham,El Damatty, Ashraf Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.18 No.3

        An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

      • SCIESCOPUS

        Behaviour of transmission line conductors under tornado wind

        Hamada, Ahmed,El Damatty, Ashraf A. Techno-Press 2016 Wind and Structures, An International Journal (WAS Vol.22 No.3

        Electricity is transmitted by transmission lines from the source of production to the distribution system and then to the end users. Failure of a transmission line can lead to devastating economic losses and to negative social consequences resulting from the interruption of electricity. A comprehensive in-house numerical model that combines the data of computational fluid dynamic simulations of tornado wind fields with three dimensional nonlinear structural analysis modelling of the transmission lines (conductors and ground-wire) is used in the current study. Many codes of practice recommend neglecting the tornado forces acting on the conductors and ground-wires because of the complexity in predicting the conductors' response to such loads. As such, real transmission line systems are numerically simulated and then analyzed with and without the inclusion of the lines to assess the effect of tornado loads acting on conductors on the overall response of transmission towers. In addition, the behaviour of the conductors under the most critical tornado configuration is described. The sensitivity of the lines' behaviour to the magnitude of tornado loading, the level of initial sag, the insulator's length, and lines self-weight is investigated. Based on the current study results, a recommendation is made to consider conductors and ground-wires in the analysis and design of transmission towers under the effect of tornado wind loads.

      • SCIESCOPUS

        Finite element modelling of transmission line structures under tornado wind loading

        Hamada, A.,El Damatty, A.A.,Hangan, H.,Shehata, A.Y. Techno-Press 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

      • SCIESCOPUS

        Failure analysis of a transmission tower during a microburst

        Shehata, A.Y.,El Damatty, A.A. Techno-Press 2008 Wind and Structures, An International Journal (WAS Vol.11 No.3

        This paper focuses on assessing the failure of one of the transmission towers that collapsed in Winnipeg, Canada, as a result of a microburst event. The study is conducted using a fluid-structure numerical model that was developed in-house. A major challenge in microburst-related problems is that the forces acting on a structure vary with the microburst parameters including the descending jet velocity, the diameter of the event and the relative location between the structure and the jet. The numerical model, which combines wind field data for microbursts together with a non-linear finite element formulation, is capable of predicting the progressive failure of a tower that initiates after one of its member reaches its capacity. The model is employed first to determine the microburst parameters that are likely to initiate failure of a number of critical members of the tower. Progressive failure analysis of the tower is then conducted by applying the loads associated with those critical configurations. The analysis predicts a collapse of the conductors cross-arm under a microburst reference velocity that is almost equal to the corresponding value for normal wind load that was used in the design of the structure. A similarity between the predicted modes of failure and the post event field observations was shown.

      • KCI등재

        Finite element modelling of self-supported transmission lines under tornado loading

        A. Altalmas,A.A. El Damatty 한국풍공학회 2014 Wind and Structures, An International Journal (WAS Vol.18 No.5

        Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members\' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

      • SCIESCOPUS

        Finite-element modeling of a light-framed wood roof structure

        Jacklin, Ryan B.,El Damatty, Ashraf A.,Dessouki, Ahmed A. Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.19 No.6

        Past high speed wind events have exposed the vulnerability of the roof systems of existing light-framed wood structures to uplift loading, contributing greatly to economic and human loss. This paper further investigates the behaviour of light-framed wood structures under the uplift loading of a realistic pressure distribution. A three-dimensional finite-element model is first developed to capture the behaviour of a recently completed full-scale experiment. After describing the components used to develop the numerical model, a comparison between the numerical prediction and experimental results in terms of the deflected shape at the roof-to-wall connections is presented to gain confidence in the numerical model. The model is then used to analyze the behaviour of the truss system under realistic and equivalent uniform pressure distributions and to perform an assessment of the use of the tributary area method to calculate the withdrawal force acting on the roof-to-wall connections.

      • KCI등재

        Effective technique to analyze transmission line conductors under high intensity winds

        Haitham Aboshosha,Ashraf El Damatty 한국풍공학회 2014 한국풍공학회지 Vol.18 No.3

        An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼