RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modeling mechanical strength of self–compacting mortar containing nanoparticles using wavelet–based support vector machine

        Mohsen Khatibinia,Abdosattar Feizbakhsh,Ehsan Mohseni,Malek Mohammad Ranjbar 사단법인 한국계산역학회 2016 Computers and Concrete, An International Journal Vol.18 No.6

        The main aim of this study is to predict the compressive and flexural strengths of self–compacting mortar (SCM) containing nano–SiO2, nano–Fe2O3 and nano–CuO using wavelet–based weighted least squares–support vector machines (WLS–SVM) approach which is called WWLS–SVM. The WWLS–SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS–SVM and WWLS–SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V–funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time–consuming laboratory tests can be eliminated.

      • Assessment of flowing ability of self-compacting mortars containing recycled glass powder

        Alipour, Pedram,Namnevis, Maryam,Tahmouresi, Behzad,Mohseni, Ehsan,Tang, Waiching Techno-Press 2019 Advances in concrete construction Vol.8 No.1

        This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼