RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Zinc oxide nanopillars as an electrocatalyst for direct redox sensing of cadmium

        Bhanjana, G.,Dilbaghi, N.,Singhal, N.K.,Kim, K.H.,Kumar, S. THE KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING 2017 JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY -S Vol.53 No.-

        In this paper, we report an ultrasensitive and selective technique for direct electrochemical sensing of cadmium (Cd) by zinc oxide nanopillars (ZONPs) synthesized using a facile chemical method. The synthesized ZONPs have been characterized in terms of their topological, morphological, elemental, structural, and optical properties using various microscopic and spectroscopic techniques. A gold electrode was modified with the as-synthesized ZnO nanostructures and utilized for direct redox sensing of Cd using cyclic voltammetry (CV) and chronoamperometric techniques. This fabricated sensor demonstrated excellent sensitivity and selectivity for direct redox sensing of Cd in real and laboratory samples. Using chronoamperometry, the developed sensor demonstrated ultra-sensitivity (10μAcm<SUP>-2</SUP>ppb<SUP>-1</SUP>) with a detection limit of 4ppb (p-value<0.0001, R-value>0.99) in a linear range of 5-50ppb. The enhanced reproducibility of the sensor in the presence of common interfering ions offers the potential for use in diagnostic applications involving food adulteration and in clinical healthcare.

      • Low temperature synthesis of copper oxide nanoflowers for lead removal using sonochemical route

        Bhanjana, Gaurav,Dilbaghi, Neeraj,Kim, Ki-Hyun,Kumar, Sandeep Elsevier 2017 Journal of molecular liquids Vol.244 No.-

        <P>In this research, copper oxide (CuO) nanoflowers were obtained using a low-temperature synthesis technique with a high yield rate, and were tested as an adsorbent for the removal of lead ions (Pb2+) in aqueous systems. These CuO nanoflowers were initially characterized according to their topological, morphological, chemical, elemental, and structural parameters. Their morphology and size were investigated by field emission scanning electron microscopy (FESEM). It was found that the synthesized CuO nanoflowers ranged in size range from 20 to 90 nm with consistent features in a monoclinic phase, as elucidated by X-ray powder diffraction (XRD) analysis. Fourier transform infrared (FTIR) and energy-dispersive X-ray spectroscopy (EDS) analyses confirmed their composition to be pure CuO with minimal impurities. When these nanoflowers were utilized as an adsorbent for the removal of Pb2+, they yielded a maximum adsorption capacity of 188.7 mg/g at an adsorbent dose of 0.5 mg/mL with R-2 = similar to 0.98. The adsorption capacity of our CuO nanoflowers was considerably higher than that of adsorbents,explored by other researchers. Therefore, these CuO nanoflowers are proposed as an efficient sorbent material for waste water treatment. (C) 2017 Elsevier B.V. All rights reserved.</P>

      • SCISCIESCOPUS

        Carbon nanotubes as sorbent material for removal of cadmium

        Bhanjana, Gaurav,Dilbaghi, Neeraj,Kim, Ki-Hyun,Kumar, Sandeep Elsevier 2017 Journal of molecular liquids Vol.242 No.-

        <P>Heavy metal ions are highly toxic industrial pollutants of which maximum levels are regulated such as in the ppb range for drinking water. Elevated levels of heavy metals in natural water may have a detrimental effect on both human health and the environment. Carbon nanotubes (CNTs) have been investigated widely over last two decades for numerous potential applications to exert considerable technological impact on future miniaturized, compact, cost effective, and efficient devices. The novel tubular structures of CNTs became one of the most valuable materials in water management due to their distinct features such as inertness, porous structure, low density, and affinity for pollutants. Such astonishing features help make them overcome the shortcomings of activated carbon. In this research, we focused on the synthesis, characterization, and evaluation of multi walled carbon nano tubes (MWCNTs) as adsorbent for removal of cadmium. MWCNTs synthesized in size range of 60-70 nm (width) and length in microns using chemical vapour deposition (CVD) method were characterized by the field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Raman spectroscopic analyses. These MWCNTs when explored for the removal of cadmium ions (Cd2+) from their aqueous solutions exhibited a maximum adsorption capacity of 181.8 mg/g with the Langmuir isotherm model (R-2 = 0.98). The findings of this research work project that CNTs can play a vital role as nanoadsorbent towards heavy metals management. (C) 2017 Elsevier B.V. All rights reserved.</P>

      • Direct ultrasensitive redox sensing of mercury using a nanogold platform

        Bhanjana, G.,Dilbaghi, N.,Bhalla, V.,Kim, K.H.,Kumar, S. Elsevier 2017 Journal of molecular liquids Vol.225 No.-

        <P>Rapid industrialization and innovative material processing routes have resulted in the contamination of natural resources. Qualitative and quantitative estimation of mercury in food, beverages, water sources, and other environmental media has become of prime importance for human well-being. The present healthcare sector desires cheap, easy to use, and portable field-based monitoring kits for the detection of hazardous pollutants like mercury. In view of these facts, there is a strong need for robust, cost effective, reproducible, ultrasensitive, selective, and portable technology for the detection of mercury in samples. Here, we report the facile direct redox sensing of mercury ions at the ppb level. In this work, a combined application of linear sweep voltammetry (LSV) and chronoamperometry techniques was made for the direct electrochemical sensing of mercury ions on a nanogold platform. This is the first report in which the direct electrochemical sensing of mercury is demonstrated based on LSV & chronoamperometry techniques without the use of any biomolecule/co-coordinating ligand. ISV works in one direction/sweep, thereby diminishing the possible occurrence of interfering agents in a reverse sweep. This new approach is more reliable, robust, ultrasensitive, and user friendly relative to previous methods. The fabricated Au/Nafion/GC electrode showed ultra-high sensitivity of 11.75 A cm(-2) ppb(-1) [detection limit of 3.78 ppb (19 nM) with a linearity ranging up to 50 ppm] at a response time of <2 s, demonstrating wide applicability and efficacy of this technique for sensing mercury. (C) 2016 Published by Elsevier B.V.</P>

      • SCISCIESCOPUS

        Robust and direct electrochemical sensing of arsenic using zirconia nanocubes

        Bhanjana, Gaurav,Dilbaghi, Neeraj,Chaudhary, Savita,Kim, Ki-Hyun,Kumar, Sandeep Royal Society of Chemistry 2016 The Analyst Vol.141 No.13

        <P>The presence of heavy metal ions in the environment and in food items can severely harm human health. Thus, simple, reliable, sensitive, quick, and accurate methods for their detection must be developed as a means to improve healthcare worldwide. To this end, a robust method was developed for the direct sensing of arsenic(III) in control and real environmental samples (at neutral pH) by a gold electrode that was modified with zirconia nanocubes synthesized via a facile hydrothermal route. This sensing system was used to build a sensing profile for arsenic ions after characterization of their elemental, optical, chemical, and morphological behavior. Electrochemical sensing of arsenic was achieved by cyclic voltammetry (CV) and chronoamperometry with an ultra-sensitivity of 550 nA cm(-2) ppb(-1) and a detection limit of 5 ppb (linear range of 5-60 ppb with a response time below 2 s). Although this system experienced small interference from Cd ions, the results of the real sample analysis were comparable to those of other standard techniques. The proposed method is advantageous and can be used to assess the toxicity of water, food, and other environmental samples without requiring any toxic solutions and/or gasses in any of the analytical steps. Moreover, due to its low price, portability, and easy mass production, it can be adopted for use in screen-printed electrodes.</P>

      • SCISCIESCOPUS

        Carbon nanotubes: a novel material for multifaceted applications in human healthcare

        Kumar, Sandeep,Rani, Ruma,Dilbaghi, Neeraj,Tankeshwar, K.,Kim, Ki-Hyun The Royal Society of Chemistry 2017 Chemical Society reviews Vol.46 No.1

        <P>Remarkable advances have been achieved in modern material technology, especially in device fabrication, and these have facilitated the use of diverse materials in various applications. Carbon nanotubes (CNTs) are being successfully implemented in drug delivery, sensing, water purification, composite materials, and bone scaffolds. Thus, CNTs must meet a wide range of criteria such as surface modification, high aspect ratio, desired conductivity, high porosity and loading, non-toxicity, specificity, and selectivity, and compatibility for device fabrication. The main focus of this review is to explore the maximum applications of CNTs for human health, and we particularly focus on nanocarrier and biomedical applications. The scope of this review initially covers the basic aspects of CNTs and is also extended further to describe their synthesis strategies as well as various challenges encountered in their functionalization, dispersion, and toxicity. Our discussion also emphasizes future directions for these emerging fields of research.</P>

      • KCI등재

        Zinc oxide nanopillars as an electrocatalyst for direct redox sensing of cadmium

        Gaurav Bhanjana,Neeraj Dilbaghi,Nitin Kumar Singhal,김기현,Sandeep Kumar 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.53 No.-

        In this paper, we report an ultrasensitive and selective technique for direct electrochemical sensing of cadmium (Cd) by zinc oxide nanopillars (ZONPs) synthesized using a facile chemical method. The synthesized ZONPs have been characterized in terms of their topological, morphological, elemental, structural, and optical properties using various microscopic and spectroscopic techniques. A gold electrode was modified with the as-synthesized ZnO nanostructures and utilized for direct redox sensing of Cd using cyclic voltammetry (CV) and chronoamperometric techniques. This fabricated sensor demonstrated excellent sensitivity and selectivity for direct redox sensing of Cd in real and laboratory samples. Using chronoamperometry, the developed sensor demonstrated ultra-sensitivity (10 mA cm2 ppb1) with a detection limit of 4 ppb (p-value < 0.0001, R-value > 0.99) in a linear range of 5–50 ppb. The enhanced reproducibility of the sensor in the presence of common interfering ions offers the potential for use in diagnostic applications involving food adulteration and in clinical healthcare.

      • KCI등재후보

        High frequency direct plant regeneration from leaf, internode, and root segments of Eastern Cottonwood (Populus deltoides)

        Rakesh Yadav,Pooja Arora,Dharmendar Kumar,Neeraj Dilbaghi,Ashok Chaudhury 한국식물생명공학회 2009 Plant biotechnology reports Vol.3 No.3

        Simple, reproducible, high frequency, improved plant regeneration protocol in Eastern Cottonwood (Populus deltoides) clones, WIMCO199 and L34, has been reported. Initially, aseptic cultures established from axillary buds of nodal segments from mature plus trees on MS liquid medium supplemented with 0.25 mg l-1 KIN and 0.25 mg l-1 IAA. Nodal and internodal segments were found to be extraprolific over shoot apices during course of aseptic culture establishment, while 0.25 mg l-1 KIN concentration played a stimulatory role in high frequency plant regeneration. Diverse explants, such as various leaf segments, internodes, and roots from in vitro raised cultures, were employed. Direct plant regeneration was at high frequency of 92% in internodes, 88% in leaf segments, and 43% in root segments. This led to the formation of multiple shoot clusters on established culture media with rapid proliferation rates. Many-fold enhanced shoot elongation and growth of the clusters could be achieved on liquid MS medium supplemented with borosilicate glass beads, which offer physical support for proliferating shoots leading to faster growth in comparison to semi-solid agar or direct liquid medium. SEM examination of initial cultures confirmed direct plant regeneration events without intervening calli. In vitro regenerated plants induced roots on half-strength MS medium with 0.15 mg l-1 IAA. Rooted 5- to 6-week-old in vitro regenerated plants were transferred into a transgenic greenhouse in pots containing 1:1 mixture of vermicompost and soil at 27 ± 2C for hardening and acclimatization. 14- to 15-week-old well-established hardened plants were transplanted to the field and grown to maturity. The mature in vitro raised poplar trees exhibited a high survival rate of 85%; 4-year-old healthy trees attained an average height of 8 m and an average trunk diameter of 25 cm and have performed well under field conditions. The regeneration protocol presented here will be very useful for undertaking genetic manipulation, providing a value addition to Eastern Cottonwood propagation in future. Simple, reproducible, high frequency, improved plant regeneration protocol in Eastern Cottonwood (Populus deltoides) clones, WIMCO199 and L34, has been reported. Initially, aseptic cultures established from axillary buds of nodal segments from mature plus trees on MS liquid medium supplemented with 0.25 mg l-1 KIN and 0.25 mg l-1 IAA. Nodal and internodal segments were found to be extraprolific over shoot apices during course of aseptic culture establishment, while 0.25 mg l-1 KIN concentration played a stimulatory role in high frequency plant regeneration. Diverse explants, such as various leaf segments, internodes, and roots from in vitro raised cultures, were employed. Direct plant regeneration was at high frequency of 92% in internodes, 88% in leaf segments, and 43% in root segments. This led to the formation of multiple shoot clusters on established culture media with rapid proliferation rates. Many-fold enhanced shoot elongation and growth of the clusters could be achieved on liquid MS medium supplemented with borosilicate glass beads, which offer physical support for proliferating shoots leading to faster growth in comparison to semi-solid agar or direct liquid medium. SEM examination of initial cultures confirmed direct plant regeneration events without intervening calli. In vitro regenerated plants induced roots on half-strength MS medium with 0.15 mg l-1 IAA. Rooted 5- to 6-week-old in vitro regenerated plants were transferred into a transgenic greenhouse in pots containing 1:1 mixture of vermicompost and soil at 27 ± 2C for hardening and acclimatization. 14- to 15-week-old well-established hardened plants were transplanted to the field and grown to maturity. The mature in vitro raised poplar trees exhibited a high survival rate of 85%; 4-year-old healthy trees attained an average height of 8 m and an average trunk diameter of 25 cm and have performed well under field conditions. The regeneration protocol presented here will be very useful for undertaking genetic manipulation, providing a value addition to Eastern Cottonwood propagation in future.

      • SCISCIESCOPUS

        Development of nanoformulation approaches for the control of weeds

        Kumar, Sandeep,Bhanjana, Gaurav,Sharma, Amit,Dilbaghi, Neeraj,Sidhu, M.C.,Kim, Ki-Hyun Elsevier 2017 Science of the Total Environment Vol.586 No.-

        <P><B>Abstract</B></P> <P>The nanoformulation of pesticides has the potential to increase food productivity, while resolving the drawbacks of conventional agrochemicals, which have negative environmental impacts. In this study, herbicide (metsulfuron methyl)-loaded pectin (polysaccharide) nanoparticles were synthesized and evaluated for herbicidal activity and cytotoxicity. The optimum formulation of nanoparticles was obtained using the Central Composite Design. The basic properties (mean particle size, stability, morphology, and interaction between polymer and herbicide) were characterized using a particle size analyzer (PSA), zeta potential, transmission electron microscopy (TEM), and Fourier Transform infrared spectroscopy (FTIR), respectively. The nanoparticles were found to be in size range of 50–90nm with zeta potential value of −35.9mV. The herbicide loading and herbicide encapsulation efficiency of the nanoparticles were determined to be 6.30% and 63±2%, respectively. The cytotoxicity of the herbicide-loaded nanoparticles was evaluated using healthy cell lines (Vero cell lines) and compared with that of commercial herbicide. In addition, an in-field evaluation of our nanoformulation's effects on the <I>Chenopodium album</I> plant was performed using a pectin nanocarrier. The results showed that application of herbicide-loaded nanoparticles could be used to reduce the use of herbicides with improved efficacy and environmental safety.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Synthesis and characterization of herbicide (metsulfuron methyl) loaded pectin nanocapsules </LI> <LI> Optimization studies for best nanoformulation using Central Composite Design </LI> <LI> Cytotoxicity Assessment of prepared nanoformulation and commercial formulation on vero cell lines </LI> <LI> Real field studies of herbicide-loaded nanoparticles on <I>Chenopodium album</I> plant </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼