RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Assessment of 3D earthquake response of the Arhavi Highway Tunnel considering soil-structure interaction

        Barış SEVİM 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.11 No.1

        This paper describes earthquake response of the Arhavi Highway Tunnel its geometrical properties, 3D finite element model and the linear time history analyses under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, lineartime history analyses of the tunnel are performed applying northsouth, east-west and up accelerations components of 1992 Erzincan, Turkey ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because of needed too much memory for the analyses, the first 10 second of the ground motions, which is the most effective duration, is taken into account in calculations. The results obtained 3D finite element model are presented. In addition, the displacement and stress results are observed to be allowable level of the concrete material during the earthquakes.

      • KCI등재

        Time Dependent Changing of Dynamic Characteristics of Laboratory Arch Dam Model

        Ahmet Can Altuni ik,Bar Sev m,Alemdar Bayraktar,Süleyman Adanur,Murat Günaydin 대한토목학회 2015 KSCE JOURNAL OF CIVIL ENGINEERING Vol.19 No.4

        This paper investigates the time dependent changing of dynamic characteristics of laboratory arch dam models using ambient vibration test. For this aim, a prototype arch dam-reservoir-foundation model is constructed in laboratory conditions. The first experimental measurement tests are performed after the poured concrete aged for 10 months for some damage scenarios such as undamaged, minor-damaged and severely damaged of dam body in November 2009. To extract the experimental dynamic characteristics such as natural frequencies, mode shapes and damping ratios, a small impact effect is used as a source of ambient vibrations. Experimental measurements tests are repeated using same excitations considering severely damaged conditions with and without reservoir water in February 2014, and the dynamic characteristics are obtained, experimentally. Enhanced Frequency Domain Decomposition Method in the frequency domain is used to extract the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics are compared with each other and time effects are investigated in detail. Maximum differences between the natural frequencies obtained as 15.36% and 14.38% in the third mode for empty and full reservoir conditions, respectively. It is thought that the increase of the natural frequencies is resulted from gaining of rigidity of the concrete, ageing, temperature and different environmental effects.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼