RISS 학술연구정보서비스

다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Sensitivity-Based Model Updating of Building Frames using Modal Test Data

        Ahmet Can Altunişik,Olguhan Şevket Karahasan,Ali Fuat Genç,Fatih Yesevi Okur,Murat Günaydin,Süleyman Adanur 대한토목학회 2018 KSCE JOURNAL OF CIVIL ENGINEERING Vol.22 No.10

        Model updating is of significant importance in the actual analyses of real structures. The differences between experimental and numerical dynamic characteristics can be minimized by means of this procedure. This procedure can be carried out using two approaches, namely, the manual model updating and the global or local automated model updating. The local model updating is a convenient tool for all kind of structures capable of minimizing the differences mentioned previously nearly to zero and also of identifying the damage locations and monitoring structural integrity. In this way, current realistic behavior of structures can be represented by updated finite element models. This paper describes a Reinforced Concrete (RC) frame model, its ambient vibration testing, finite element modeling and sensitivity-based automated model updating. The RC frame is of ½ geometric scale with two floors and two bays in the longitudinal direction. It was built and then subjected to ambient vibration tests to determine experimentally their dynamic characteristics. Additionally, the finite element computer program ANSYS was used to determine its initial numerical dynamic characteristics. The experimental and numerical results were compared resulting in maximum differences of 38.38% between them. To minimize these differences, the finite element model was updated using the global and local automated approach using a sensitivity-based analyses with some uncertain parameters. The differences were finally reduced to 4.4% and 0.21% by the global and the local automated model updatings, respectively. It is concluded that sensitivity-based automated updating is a very effective procedure to obtain the updated finite element model which can reflect the current behavior of a structure.

      맨 위로 스크롤 이동