RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Reflection of social capital in educational processes: emotional literacy and emotional labor context

        Alemdar, Melek,Anılan, Hüseyin 서울대학교 교육연구소 2022 Asia Pacific Education Review Vol.23 No.1

        Previous attempts to explain teachers’ educational efectiveness have mostly focused on personal traits, organizational commitment, pedagogical content knowledge or the passion for education, and so on. We want to highlight that social skills— competencies that enable teachers to interact efectively with others—might contribute to the teachers’ well-being with the help of emotional regulation. Using the hypothesis that building positive relationships and relating to others emotionally may lead to positive outcomes in the educational process, the aim of this study was to explore the efect of teachers’ emotional literacy skills and emotional labor behaviors on their social capital. A structural equation model was developed to describe the cause–efect relationship between the variables. The population investigated in the study consisted of high school teachers in the central districts of Eskişehir, Turkey, in the 2017–2018 academic year and the sample included 399 teachers taken from seven diferent school types using the stratifed sampling method. Data analysis was performed using correlation and descriptive analysis, the structural validity of the scales was determined by exploratory and confrmatory factor analysis, and the validity of the structural equation model was tested by running a path analysis—the model was acceptable. The results of the analyses indicate that there are positive efects of emotional literacy on emotional labor and emotional labor on social capital. In addition, emotional labor had a full mediating efect in the relationship between emotional literacy and social capital. Possible explanations of the results, limitations, and suggestions for the study are discussed.

      • SCIESCOPUS
      • KCI등재후보

        Finite element model updating of Kömürhan highway bridge based on experimental measurements

        Alemdar Bayraktar,Ahmet Can Altunisik,Baris Sevim,Temel Türker 국제구조공학회 2010 Smart Structures and Systems, An International Jou Vol.6 No.4

        The updated finite element model of Kömürhan Highway Bridge on the Flrat River located on the 51st km of Elazl-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.

      • KCI등재

        Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

        Alemdar Bayraktar,Ahmet Can Altuni ik,Baris Sevim,Murat Emre Kartal,Temel Türker 국제구조공학회 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.28 No.4

        Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

      • KCI등재후보

        Modal testing and finite element model calibration of an arch type steel footbridge

        Alemdar Bayraktar,Ahmet Can Altuni ik,Bari Sevim,Temel Türker 국제구조공학회 2007 Steel and Composite Structures, An International J Vol.7 No.6

        In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

      • SCIESCOPUS

        Finite element model updating of Kömürhan highway bridge based on experimental measurements

        Bayraktar, Alemdar,Altunisik, Ahmet Can,Sevim, Baris,Turker, Temel Techno-Press 2010 Smart Structures and Systems, An International Jou Vol.6 No.4

        The updated finite element model of K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge on the Firat River located on the $51^{st}$ km of Elazi$\breve{g}$-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.

      • SCIESCOPUS

        Damages of minarets during Erciş and Edremit Earthquakes, 2011 in Turkey

        Bayraktar, Alemdar,Altunisik, Ahmet Can,Muvafik, Murat Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.14 No.3

        This paper illustrates the damages of reinforced concrete and masonry minarets during October 23 (Erci?) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Erci? and Edremit are townships located 90km and 18km from Van city center in Turkey, respectively. Ground accelerations and response spectrums for these earthquakes are given in this paper. A total of 63 reinforced concrete and masonry minarets are heavily damaged or collapsed in the city center and villages nearby after both earthquakes. Because of the fact that there is no Turkish standard and specification directly related to design of minarets, nearly all of the constructions are carried out by workers using only their own technical knowledge. So, all of the non-engineering reinforced concrete and masonry minarets completely collapsed or damaged heavily. From the study, it is seen that the damages are due to several reasons such as site effect, location, and length of the fault, reduction in cross section and formation of the discontinuity, use of plain reinforcement steel, use of concrete with insufficient strength, existence of short lap splices and incorrect end hook angle, larger mass and stiffness concentrations on some region, longitudinal reinforcements discontinuity, cracks at the cylindrical body, and damage of spire and end ornament. In addition to these reasons, the two earthquakes hit the minarets within seventeen days, causing progressive damage. So, the existing design and construction practices should be improved to provide sufficient earthquake performance. Also, it is recommended that there should be a safe distance between the minaret and surrounding structures to reduce the loose of life after earthquake.

      • KCI등재
      • SCIESCOPUS

        Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

        Bayraktar, Alemdar,Altunisik, Ahmet Can,Sevim, Baris,Kartal, Murat Emre,Turker, Temel Techno-Press 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.28 No.4

        Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

      • SCIESCOPUS

        Stochastic analysis of fluid-structure interaction systems by Lagrangian approach

        Bayraktar, Alemdar,Hancer, Ebru Techno-Press 2005 Structural Engineering and Mechanics, An Int'l Jou Vol.20 No.4

        In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluidstructure systems by using the Lagrangian approach. For that reason, variable-number-nodes twodimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and incorporated into a general-purpose computer program for stochastic dynamic analysis of structure systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir interaction system are selected and modeled by finite element method. Results obtained from the modal analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The mean of maximum values of displacements and hydrodynamic pressures are compared with the deterministic analysis results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼