RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        HfO<sub>2</sub> 열처리 온도 및 두께에 따른 RRAM의 전기적 특성

        최진형,유종근,박종태,Choi, Jin-Hyung,Yu, Chong Gun,Park, Jong-Tae 한국정보통신학회 2014 한국정보통신학회논문지 Vol.18 No.3

        The electrical characteristics of RRAM with different annealing temperature and thickness have been measured and discussed. The devices with Pt/Ti top electrode of 150nm, Pt bottom electrode of 150nm, $HfO_2$ oxide thickness of 45nm and 70nm have been fabricated. The fabricated device were classified by 3 different kinds according to the annealing temperature, such as non-annealed, annealed at $500^{\circ}C$ and annealed at $850^{\circ}C$. The set and reset voltages and the variation of resistance with temperatures have been measured as electrical properties. From the measurement, it was found that the set voltages were decreased and the reset voltage were increased slightly, and thus the sensing window was decreased with increasing of measurement temperatures. It was remarkable that the device annealed at $850^{\circ}C$ showed the best performances. Although the device with thickness of 45nm showed better performances in the point of the sensing window, the resistance of 45nm devices was large relatively in the low resistive state. It can be expected to enhance the device performances with ultra thin RRAM if the defect generation could be reduced at the $HfO_2$ deposition process. 본 연구에서는 RRAM (Resistive Random Access Memory) 소자의 $HfO_2$ 열처리 온도와 두께에 따라 소자의 전기적 특성을 측정하였다. 제작한 소자는 상부전극이 Pt/Ti(150nm), 하부전극은 Pt(150nm), 산화층 $HfO_2$의 두께는 45nm와 70nm이고, 열처리를 하지 않은 소자와 $500^{\circ}C$, $850^{\circ}C$ 로 열처리를 한 3 종류이다. 온도에 따라 소자의 전기적 성능으로 셋/리셋 전압, 저항변화를 측정하였다. 온도에 따른 기본특성 분석 실험 결과 온도가 증가함에 따라 셋 전압은 감소하고 리셋 전압은 증가하여 감지 여유 폭이 감소하였다. 열처리 온도가 $850^{\circ}C$ 소자가 고온 특성이 가장 우수한 것을 보였다. $HfO_2$ 산화층의 두께 45nm 소자가 70nm 소자보다 감지 여유 폭이 크지만 결함으로 LRS(Low Resistive State)에서 저항이 큰 것으로 측정되었다. $HfO_2$ 산화층 증착 시 결함을 줄일 수 있는 공정조건을 설정하면 초박막의 RRAM 소자를 제작할 수 있을 것으로 기대된다.

      • KCI등재

        진동과 열에너지를 이용한 자동 스위칭 에너지 하베스팅 회로

        윤은정,유종근,Yoon, Eun-Jung,Yu, Chong-Gun 한국전기전자학회 2015 전기전자학회논문지 Vol.19 No.2

        본 논문에서는 진동과 열에너지를 이용한 자동 스위칭 에너지 하베스팅 회로를 제안한다. 열전소자와 진동소자로부터 출력되는 에너지는 최대 가용전력지점이 개방전압의 1/2로 같기 때문에 동일한 MPPT(Maximum Power Point Tracking) 제어회로를 사용할 수 있다. 제안된 회로는 하나의 MPPT 제어회로를 사용하고, 자동 스위칭 기능을 적용하여 열전소자의 출력과 진동소자의 출력을 모니터링하여 전압이 더 큰 소자로부터 최대 가용전력을 수확한다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계하였으며, 모의실험을 통해 동작을 검증하였다. 설계된 회로의 칩 면적은 PAD를 포함하여 $1.4mm{\times}1.2mm$이다. In this paper an auto-switching energy harvesting circuit using vibration and thermoelectric energy is proposed. Since the maximum power point of a thermoelectric generator(TEG) output and a vibration device(PEG) output is 1/2 of their open-circuit voltage, an identical MPPT controller can be used for both energy sources. The proposed circuit monitors the outputs of the TEG and PEG, and chooses the energy source generating a higher output voltage using an auto-switching controller, and then harvests the maximum power from the selected device using the MPPT controller. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process and its functionality has been verified through extensive simulations. The designed chip occupies $1.4mm{\times}1.2mm$ including pads.

      • KCI등재후보

        MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로

        양민재,윤은정,유종근,Yang, Min-Jae,Yoon, Eun-Jung,Yu, Chong-Gun 한국전기전자학회 2016 전기전자학회논문지 Vol.20 No.1

        본 논문에서는 진동에너지 수확을 위한 MPPT (Maximum Power Point Tracking) 제어 기능을 갖는 CMOS 인터페이스 회로를 설계하였다. 간단한 구조와 적은 비용으로 출력을 안정화시키기 위해 전력변환기인 DC-DC 부스트 변환기의 출력 단에 PMU (Power Management Unit)를 이용하는 구조를 제안하였다. 또한, 진동소자로부터 최대전력을 수확하여 시스템의 효율을 향상시키기 위해 FOC (Fractional Open Circuit) 방식의 MPPT 제어회로를 설계하였다. 진동소자 (PZT)에서 출력되는 AC 신호는 AC-DC 변환기를 통해 DC 신호로 변환되며, DC-DC 부스트 변환기를 거쳐 승압되고, PMU에 의해 듀티 (duty)를 갖는 안정화된 신호로 변환되어 부하로 공급된다. AC-DC 변환기는 효율 특성이 좋은 능동 다이오드를 이용한 전파정류기를 사용하였으며, DC-DC 부스트 변환기는 제어회로가 간단한 쇼트키 다이오드를 이용한 구조를 사용하였다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계되었으며, 설계된 칩의 면적은 $915{\mu}m{\times}895{\mu}m$이다. 설계된 회로의 성능을 검증한 결과 전체회로의 최대 전력효율은 83.4%이다. This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

      • KCI등재

        DC-DC 부스트 변환기를 이용한 열전에너지 하베스팅 회로

        윤은정,박종태,유종근,Yoon, Eun-Jung,Park, Jong-Tae,Yu, Chong-Gun 한국전기전자학회 2013 전기전자학회논문지 Vol.17 No.3

        This paper describes a DC-DC boost converter for thermoelectric energy harvesting. The designed converter boosts the VDD through a start-up block from a low-output voltage of a thermoelectric device and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VOUT is achieved by alternately operating the DC-DC converter for VDD and the main DC-DC converter for VOUT according to the comparator outputs. Simulation results shows that the designed converter generates 2.65V from an input voltage of 200mV and its maximum power efficiency is 63%. The area of the chip designed using a 0.35um CMOS process is $1.3mm{\times}0.7mm$ including pads. 본 논문에서는 열전에너지 하베스팅을 위한 저전압 DC-DC 부스트 변환기를 설계하였다. 설계된 변환기는 열전소자의 작은 출력전압으로부터 시동회로를 통해 일정 전압까지 승압된 VDD를 얻으며, 이는 내부 컨트롤 블록을 동작시키는데 사용된다. VDD가 원하는 전압 값에 도달하면 전압감지기가 이를 감지하고 시동회로에 공급되는 전류를 차단하여 전류소모를 최소화한다. 이후 비교기의 출력에 따라 VDD를 위한 DC-DC 변환기와 최종출력 VOUT을 위한 DC-DC 변환기를 번갈아가며 동작시켜서 최종적으로 승압된 VOUT을 얻는다. 모의실험 결과, 설계한 변환기는 200mV의 입력으로부터 2.65V의 VOUT을 출력하며, 최대 전력효율은 63%이다. $0.35{\mu}m$ CMOS 공정을 사용하여 설계한 칩의 크기는 PAD를 포함하여 $1.3mm{\times}0.7mm$이다.

      • KCI등재

        빛 에너지 하베스팅을 이용한 자가발전 시스템용 전력관리 회로

        윤은정,박종태,유종근,Yoon, Eun-Jung,Park, Jong-Tae,Yu, Chong-Gun 한국정보통신학회 2013 한국정보통신학회논문지 Vol.17 No.7

        In this paper two types of power management circuits for solar energy harvesting self-powered systems are proposed. First, if the output voltage of a solar cell is enough to drive load, a power management unit(PMU) directly supplies load with solar energy. Second, if a solar cell outputs very low voltage less than 0.5V as in miniature solar cells or monolithic integrated solar cells such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then PMU delivers the boosted voltage to the load. The proposed power management systems are designed and fabricated in a $0.18{\mu}m$ CMOS process, and their performances are compared and analyzed through measurements. 본 논문에서는 빛 에너지 하베스팅 자가발전 시스템을 위한 두 가지 구조의 전력관리 회로를 제안한다. 첫 번째는, 솔라셀이 부하가 동작할 수 있는 충분한 전압을 출력하는 경우, 전력관리회로를 통해 직접 솔라셀의 에너지를 부하로 공급하는 구조이다. 두 번째는 초소형 솔라셀이나 집적화된 솔라셀에서처럼 출력전압이 0.5V 이하로 매우 작아서 부하를 직접 구동할 수 없는 경우, 전압부스터를 사용하여 충분한 전압까지 승압한 후, 이를 전력관리회로를 통해 부하로 공급하는 구조이다. 이 두 가지 구조의 전력관리 회로는 $0.18{\mu}m$ CMOS 공정으로 설계 및 제작되었으며, 측정을 통해 성능을 비교 분석하였다.

      • KCI등재

        MEMS 가속도센서를 위한 CMOS Readout 회로

        윤은정,박종태,유종근,Yoon, Eun-Jung,Park, Jong-Tae,Yu, Chong-Gun 한국전기전자학회 2014 전기전자학회논문지 Vol.18 No.1

        본 논문에서는 MEMS(Micro Electro Mechanical System) 가속도센서를 위한 CMOS readout 회로를 설계하였다. 설계된 CMOS readout 회로는 MEMS 가속도 센서, 커패시턴스-전압 변환기(CVC), 그리고 2차 스위치드 커패시터 ${\Sigma}{\Delta}$ 변조기로 구성된다. 이들 회로에는 저주파 잡음과 오프셋을 감소시키기 위한 correlated-double-sampling(CDS)와 chopper-stabilization(CHS) 기법이 적용되었다. 설계 결과 CVC는 150mV/g의 민감도와 0.15%의 비선형성을 갖는다. 설계된 ${\Sigma}{\Delta}$ 변조기는 입력전압 진폭이 100mV가 증가할 때, 출력의 듀티 싸이클은 10%씩 증가하며, 0.45%의 비선형성을 갖는다. 전체 회로의 민감도는 150mV/g이며, 전력소모는 5.6mW이다. 제안된 회로는 CMOS 0.35um 공정을 이용하여 설계하였고, 공급 전압은 3.3V이며, 동작 주파수는 2MHz이다. 설계된 칩의 크기는 PAD를 포함하여 $0.96mm{\times}0.85mm$이다. This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

      • 저전력 CMOS On-Chip 기준전압 발생회로

        권덕기,박종태,유종근,Kwon, Duck-Ki,Park, Jong-Tae,Yu, Chong-Gun 한국전기전자학회 2000 전기전자학회논문지 Vol.4 No.2

        본 논문에서는 증식형 MOS 트랜지스터와 저항만을 사용하여 기준전압을 발생하기 위한 두 가지 방법을 제안하였다. 첫 번째 방법은 문턱전압에 비례하는 전압성분과 열전압에 비례하는 전압성분을 합하여 온도보상을 하는 전압모드 방식이고, 두 번째는 문턱전압에 비례하는 전류성분과 열전압에 비례하는 전류성분을 합하여 온도보상을 하는 전류모드 방식이다. 설계된 회로들을 $0.65{\mu}m$ n-well CMOS 공정 페러미터를 사용하여 HSPICE 모의실험한 결과, 전압모드 회로의 경우 공급전압에 대한 변화율은 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.21%/V 이하이고, 온도에 대한 변화율은 $3V{\sim}12V$의 공급전압 범위에서 $48.0ppm/^{\circ}C$ 이하이다. 전류모드 회로의 경우는 공급전압에 대한 변화율이 $-30^{\circ}C{\sim}130^{\circ}C$의 온도범위에서 0.08%/V 이하이고, 온도에 대한 변화율은 $4V{\sim}12V$의 공급전압 범위에서 $38.2ppm/^{\circ}C$ 이하이다. 또한 전력소모는 5V, $30^{\circ}C$일 때 전압모드 경우와 전류모드 경우 각각 $27{\mu}W$와 $65{\mu}W$로 저전력 특성을 보인다. 제작된 전압모드 기준전압 발생회로를 측정한 결과, 공급전압에 대한 변화율은 $30^{\circ}C{\sim}100^{\circ}C$의 온도범위에서 0.63%/V 이하이고, 온도에 대한 변화율은 $3.0{\sim}6.0V$의 공급전압 범위에서 $490ppm/^{\circ}C$ 보다 작다. 제안된 회로들은 구조가 간단하기 때문에 설계가 용이하고, 특히 전류모드의 경우 넓은 범위의 기준전압 발생이 가능하다는 장점을 갖는다. In this paper, two schemes of generating reference voltages using enhancement-mode MOS transistors and resistors are proposed. The first one is a voltage-mode scheme where the temperature compensation is made by summing a voltage component proportional to a threshold voltage and a voltage component proportional to a thermal voltage. In the second one, that is a current-mode scheme, the temperature compensation is made by summing a current component proportional to a threshold voltage and a current component proportional to a thermal voltage. The designed circuits have been simulated using a $0.65{\mu}m$ n-well CMOS process parameters. The voltage-mode circuit has a temperature coefficient less than $48.0ppm/^{\circ}C$ and a power-supply(VDD) coefficient less than 0.21%/V for a temperature range of $-30^{\circ}C{\sim}130^{\circ}C$ and a VDD range of $3V{\sim}12V$. The current-mode circuit has a temperature coefficient less than $38.2ppm/^{\circ}C$ and a VDD coefficient less than 0.8%/V for $-30^{\circ}C{\sim}130^{\circ}C\;and\; 4V{\sim}12V$. The power consumption of the voltage-mode and current-mode circuits are $27{\mu}W\;and\;65{\mu}W$ respectively for 5V and $30^{\circ}C$. Measurement results show that the voltage-mode reference circuit has a VDD coefficient less than 0.63%/V for $30^{\circ}C{\sim}100^{\circ}C$ and has a temperature coefficient less than $490ppm/^{\circ}C\;for\;3V{\sim}6V$. The proposed reference circuits are simple and thus easy to design. The proposed current-mode reference circuit can be designed to generate a wide range of reference voltages.

      • KCI등재후보

        RFID 시스템에서 공진주파수 부정합에 의해 발생하는 현상 분석

        권덕기,박종태,유종근,Kwon, Duck-Ki,Park, Jong-Tae,Yu, Chong-Gun 한국전기전자학회 2004 전기전자학회논문지 Vol.8 No.2

        In an RFID system, it is desirable to have both the reader and the transponder tuned to the same resonant frequency for efficient data transmission between them. Any difference in frequency will decrease the transponder coil voltage or the internal power supply voltage and will increase the possibility of zero modulation in the reader coil, which results in the reduction of the reading distance. In this paper, the phenomena caused by the frequency mismatch are theoretically analyzed and mathematically modelled. Several schemes to compensate for the frequency mismatch are also mentioned. The derived equations and analyzed theory on the data transmission between the reader and the transponder will be helpful to the development of RFID systems for many applications. RFID 시스템에서 리더와 트랜스폰더 사이에 원활한 데이터 전송이 이루어지기 위해서는 리더 안테나와 트랜스폰더 안테나 사이에 공진 주파수 정합이 필요하다. 공진 주파수에 부정합이 발생하면, 트랜스폰더 안테나 코일에 유도되는 전압이 감소하게 되며, 따라서 트랜스폰더의 내부 전원 전압이 감소하게 된다. 또한, 리더 안테나 코일에 zero modulation의 확률이 증가하게 되어 궁극적으로 인식 거리의 감소를 가져오게 된다. 본 논문에서는 이러한 공진 주파수의 부정합이 초래하는 현상에 대해 이론적으로 분석을 하고, 수식적으로 모델링하였다. 또한, 공진주파수 부정합을 보상하기 위한 방법에 대해 언급하였다. 리더와 트랜스폰더 사이의 데이터 전송에 관해 본 논문에서 유도된 수식 및 분석된 이론들은 다양한 응용 분야를 위한 RFID 시스템의 신속한 개발에 큰 도움이 될 수 있을 것으로 기대된다.

      • KCI등재

        빛 에너지 하베스팅을 이용한 MPPT 제어 기능을 갖는 배터리 충전기

        윤은정,양민재,유종근,Yoon, Eun-Jung,Yang, Min-Jae,Yu, Chong-Gun 한국전기전자학회 2015 전기전자학회논문지 Vol.19 No.2

        본 논문에서는 빛에너지 하베스팅을 이용한 MPPT(Maximum Power Point Tracking) 제어 기능을 갖는 배터리 충전기를 제안한다. 제안된 회로는 MPPT를 이용하여 빛 에너지를 PV(photovoltaic) 셀로부터 수확하고, 수확한 에너지를 배터리에 연결하여 충전한다. 배터리 관리 회로에서 출력되는 신호에 따라, 배터리의 충전 상태가 조절된다. MPPT 제어는 PV 셀의 개방회로 전압과 MPP 전압간의 비례관계를 이용하여, 보조(pilot) PV 셀로 하여금 주(main) PV 셀의 MPP를 실시간 추적할 수 있도록 설계하였다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계하였으며, 모의실험을 통해 성능을 검증하였다. 설계된 회로의 최대 효율은 86.2%이며 칩 면적은 패드를 포함하여$1.35mm{\times}1.2mm$이다. This paper describes a battery charger using photovoltaic energy harvesting with MPPT control. The proposed circuit harvests maximum power from a PV(photovoltaic) cell by employing MPPT(Maximum Power Point Tracking) control and charges an external battery with the harvested energy. The charging state of the battery is controlled according to the signals from a battery management circuit. The MPPT control is implemented using linear relationship between the open-circuit voltage of a PV cell and its MPP voltage such that a pilot PV cell can track the MPP of a main PV cell in real time. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 86.2% and the chip area including pads is $1.35mm{\times}1.2mm$.

      • KCI등재

        분산제어시스템을 위한 저잡음 SMPS의 설계 및 구현

        정태현,박종태,유종근,Cheong, Tai-Hyun,Park, Jong-Tae,Yu, Chong-Gun 한국전기전자학회 2008 전기전자학회논문지 Vol.12 No.1

        본 논문에서는 기존 산업분야에 사용되고 있는 제품을 대체 할 수 있는 효율적인 SMPS를 설계하고 구현하였다. 기존의 분산제어시스템에서 사용하고 있는 SMPS의 성능을 분석하기 위하여 입력전압 및 부하 변동에 따른 출력 값 변화, 리플전압과 잡음 전압의 최대값 등을 측정하고 분석하였다. 그 결과 기존의 SMPS는 스위칭 주파수가 17KHz로 가청잡음이 발생하며, 하나의 변압기로 전 출력을 인출하였고, 출력선로에 경보 로직 회로를 구성하고 있기 때문에 전류가 흐를 수 있는 동박면(Pattern)이 부족하고 잡음이 크게 발생하는 것을 확인하였다. 이런 문제를 해결하기 위해 본 논문에서는 스위칭 주파수를 70KHz로 높이고, 경보회로 부분과 PWM 제어회로 부분을 하위의 보드(Sub-board)로 처리하여 전류가 흐를 수 있는 동박면을 충분히 확보하였다. 그 결과 모든 설정 조건에서 기존의 SMPS보다 잡음이 32% 이하로 감소하며, 입력전압변동 및 부하변동 특성이 향상되는 것을 실험을 통해 확인할 수 있었다. In this paper, a new efficient SMPS has been designed and implemented. It can replace the existing product that is widely used in industry. To investigate the performance of the conventional SMPS, the output voltage changes due to variations in the input voltage and the load conditions, and the ripple and noise voltages have been measured and analyzed. As a result, it has been confirmed that the noise in the conventional SMPS is severe due to the deficiency of patterns for current. This is because the conventional SMPS draw out all outputs using one transformer and the alarm logic exists in the output path. To solve this problem, the switching frequency is increased from 17KHz to 70KHz and the current patterns are fully guaranteed by separating the alarm circuit and PWM circuit as a sub-board from the main board. Measurement results shows that the output noise of the designed SMPS decreases below 32% of the conventional SMPS noise for various test conditions, and both the line and load regulations are improved.

      연관 검색어 추천

      활용도 높은 자료

      이 검색어로 많이 본 자료

      해외이동버튼