RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Haidao Suanjing in Joseon Mathematics

        홍성사,홍영희,김창일 한국수학사학회 2019 Journal for history of mathematics Vol.32 No.6

        Haidao Suanjing was introduced into Joseon by discussion in Yang Hui Suanfa (楊輝算法) which was brought into Joseon in the 15th century. As is well known, the basic mathematical structure of Haidao Suanjing is perfectly illustrated in Yang Hui Suanfa. Since the 17th century, Chinese mathematicians understood the haidao problem by the Western mathematics, namely an application of similar triangles. The purpose of our paper is to investigate the history of the haidao problem in the Joseon Dynasty. The Joseon mathematicians mainly conformed to Yang Hui's verifications. As a result of the influx of the Western mathematics of the Qing dynasty for the study of astronomy in the 18th century Joseon, Joseon mathematicians also accepted the Western approach to the problem along with Yang Hui Suanfa.

      • KCI등재

        Chosun Mathematics in the early 18th century

        홍성사,홍영희,Hong, Sung-Sa,Hong, Young-Hee The Korean Society for History of Mathematics 2012 Journal for history of mathematics Vol.25 No.2

        1592년과 1636년 양대 전란으로 전통적인 조선 산학의 결과는 거의 소멸되어, 17세기 중엽 조선 산학은 새로 시작할 수밖에 없었다. 조선은 같은 시기에 청으로 부터 도입된 시헌력(時憲曆, 1645)을 이해하기 위하여 서양수학에 관련된 자료를 수입하기 시작하였다. 한편 전통 산학을 위하여 김시진(金始振, 1618-1667)은 산학계몽(算學啓蒙, 1299)을 중간(重刊)하였다. 이들의 영향으로 이루어진 조태구(趙泰耉, 1660-1723)의 주서관견(籌書管見)과 홍정하(洪正夏, 1684-?)의 구일집(九一集)을 함께 조사하여 이들이 조선 산학의 발전에 새로운 전기를 마련한 것을 보인다. After disastrous foreign invasions in 1592 and 1636, Chosun lost most of the traditional mathematical works and needed to revive its mathematics. The new calendar system, ShiXianLi(時憲曆, 1645), was brought into Chosun in the same year. In order to understand the system, Chosun imported books related to western mathematics. For the traditional mathematics, Kim Si Jin(金始振, 1618-1667) republished SuanXue QiMeng(算學啓蒙, 1299) in 1660. We discuss the works by two great mathematicians of early 18th century, Cho Tae Gu(趙泰耉, 1660-1723) and Hong Jung Ha(洪正夏, 1684-?) and then conclude that Cho's JuSeoGwanGyun(籌 書管見) and Hong's GuIlJib(九一集) became a real breakthrough for the second half of the history of Chosun mathematics.

      • KCI등재

        TianYuanShu and Numeral Systems in Eastern Asia

        홍성사,홍영희,이승온,Hong, Sung Sa,Hong, Young Hee,Lee, Seung On The Korean Society for History of Mathematics 2012 Journal for history of mathematics Vol.25 No.4

        In Chinese mathematics, there have been two numeral systems, namely one in spoken language for recording and the other by counting rods for computations. They concerned with problems dealing with practical applications, numbers in them are concrete numbers except in the process of basic operations. Thus they could hardly develop a pure theory of numbers. In Song dynasty, 0 and TianYuanShu were introduced, where the coefficients were denoted by counting rods. We show that in this process, counting rods took over the role of the numeral system in spoken language and hence counting rod numeral system plays the role of that for abstract numbers together with the tool for calculations. Decimal fractions were also understood as denominate numbers but using the notions by counting rods, decimals were also admitted as abstract numbers. Noting that abacus replaced counting rods and TianYuanShu were lost in Ming dynasty, abstract numbers disappeared in Chinese mathematics. Investigating JianJie YiMing SuanFa(簡捷易明算法) written by Shen ShiGui(沈士桂) around 1704, we conclude that Shen noticed repeating decimals and their operations, and also used various rounding methods. 중국의 명수법은 기록은 구어체를 사용하고, 계산은 산대를 사용하는 이중 구조를 가지고 있었다. 또 산서는 실생활의 문제만 다루는 과정에서 수학적 구조를 나타내는 방법을 택하여 계산 과정을 제외하면 이들에서 취급한 수는 모두 명수(名數)들이어서 순수한 수론의 발전을 이룰 수 없었다. 송대에 0의 도입과 함께, 천원술의 표현에서 나타나는 계수를 산대로 표시하는 방법을 통하여, 산대가 계산 도구와 함께 추상수의 기수법(記數法)이 되는 과정을 밝힌다. 수량의 단위를 사용한 소수의 표현도 이 과정에서 산대 표현으로 대치되었다. 그러나 명대에 산대 계산이 주산으로 대치되고 천원술이 잊히게 되어 추상수의 개념도 함께 잊히게 되었다. 청대의 산학자 심사계(沈士桂)가 저서 간첩이명산법(簡捷易明算法)에서 분수의 소수표시와 계산을 하는 과정에서 순환소수를 인지하고 이들의 계산법을 확립한 것도 보인다.

      • KCI등재

        Mathematical Structures and SuanXue QiMeng

        홍성사,홍영희,이승온,Hong, Sung Sa,Hong, Young Hee,Lee, Seung On The Korean Society for History of Mathematics 2013 Journal for history of mathematics Vol.26 No.2

        주세걸(朱世傑) 산학계몽(算學啓蒙)은 조선 산학의 발전에 가장 중요한 역할을 한 산서이다. 천원술을 비롯한 산학계몽(算學啓蒙)의 내용은 조선 산학의 중요한 연구 대상이 되었다. 이 논문의 목적은 주세걸(朱世傑)이 수학적 구조를 강조하면서 산학계몽(算學啓蒙)을 저술한 것을 보여서 조선 산학자들에게 수학적 구조에 대한 이해를 크게 확장한 것을 드러내는 것이다. 이와 함께 주세걸(朱世傑) 이전의 산서에 나타나는 구조적 접근과 산학계몽(算學啓蒙)의 접근을 비교하여 주세걸(朱世傑)의 접근이 뛰어나고 또 현대에 사용되는 구조적 접근과 일치하는 것을 보인다. It is well known that SuanXue QiMeng has given the greatest contribution to the development of Chosun mathematics and that the topics and their presentation including TianYuanShu in the book have been one of the most important backbones in the developement. The purpose of this paper is to reveal that Zhu ShiJie emphasized decidedly mathematical structures in his SuanXue QiMeng, which in turn had a great influence to Chosun mathematicians' structural approaches to mathematics. Investigating structural approaches in Chinese mathematics books before SuanXue QiMeng, we conclude that Zhu's attitude to mathematical structures is much more developed than his precedent ones and that his mathematical structures are very close to the present ones.

      • KCI등재

        Mathematical Structures of Joseon mathematician Hong JeongHa

        홍성사,홍영희,이승온,Hong, Sung Sa,Hong, Young Hee,Lee, Seung On The Korean Society for History of Mathematics 2014 Journal for history of mathematics Vol.27 No.1

        From the mid 17th century, Joseon mathematics had a new beginning and developed along two directions, namely the traditional mathematics and one influenced by western mathematics. A great Joseon mathematician if not the greatest, Hong JeongHa was able to complete the Song-Yuan mathematics in his book GuIlJib based on his studies of merely Suanxue Qimeng, YangHui Suanfa and Suanfa Tongzong. Although Hong JeongHa did not deal with the systems of equations of higher degrees and general systems of linear congruences, he had the more advanced theories of right triangles and equations together with the number theory. The purpose of this paper is to show that Hong was able to realize the completion through his perfect understanding of mathematical structures.

      • KCI등재

        Kaifangfa and Translation of Coordinate Axes

        홍성사,홍영희,장혜원,Hong, Sung Sa,Hong, Young Hee,Chang, Hyewon The Korean Society for History of Mathematics 2014 Journal for history of mathematics Vol.27 No.6

        Since ancient civilization, solving equations has become one of the most important subjects in mathematics and mathematics education. The extractions of square roots and cube roots were first dealt in Jiuzhang Suanshu in the setting of subdivisions. Extending these, Shisuo Kaifangfa and Zengcheng Kaifangfa were introduced in the 11th century and the subsequent development became one of the most important contributions to mathematics in the East Asian mathematics. The translation of coordinate axes plays an important role in school mathematics. Connecting the translation and Kaifangfa, we find strong didactical implications for improving students' understanding the history of Kaifangfa together with the translation itself although the latter is irrelevant to the former's historical development.

      • KCI등재

        Hong JeongHa's Tianyuanshu and Zhengcheng Kaifangfa

        홍성사,홍영희,김영욱,Hong, Sung Sa,Hong, Young Hee,Kim, Young Wook The Korean Society for History of Mathematics 2014 Journal for history of mathematics Vol.27 No.3

        Tianyuanshu and Zengcheng Kaifangfa introduced in the Song-Yuan dynasties and their contribution to the theory of equations are one of the most important achievements in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The operations, or the mathematical structure of polynomials have been overlooked by traditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathematician Hong JeongHa reveals that Hong's approach to polynomials is highly structural. For the expansion of $\prod_{k=11}^{n}(x+a_k)$, Hong invented a new method which we name Hong JeongHa's synthetic expansion. Using this, he reveals that the processes in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion.

      • KCI등재

        Volumes of Solids in Joseon Mathematics

        홍성사,홍영희,김창일,Hong, Sung Sa,Hong, Young Hee,Kim, Chang Il The Korean Society for History of Mathematics 2014 Journal for history of mathematics Vol.27 No.2

        Joseon is mainly an agricultural country and its main source of national revenue is the farmland tax. Since the beginning of the Joseon dynasty, the assessment and taxation of agricultural land became one of the most important subjects in the national administration. Consequently, the measurement of fields, or the area of various plane figures and curved surfaces is a very much important topic for mathematical officials. Consequently Joseon mathematicians were concerned about the volumes of solids more for those of granaries than those of earthworks. The area and volume together with surveying have been main geometrical subjects in Joseon mathematics as well. In this paper we discuss the history of volumes of solids in Joseon mathematics and the influences of Chinese mathematics on the subject.

      • KCI등재

        Division Algorithm in SuanXue QiMeng

        홍성사,홍영희,이승온,Hong, Sung Sa,Hong, Young Hee,Lee, Seung On The Korean Society for History of Mathematics 2013 Journal for history of mathematics Vol.26 No.5

        The Division Algorithm is known to be the fundamental foundation for Number Theory and it leads to the Euclidean Algorithm and hence the whole theory of divisibility properties. In JiuZhang SuanShu(九章算術), greatest common divisiors are obtained by the exactly same method as the Euclidean Algorithm in Elements but the other theory on divisibility was not pursued any more in Chinese mathematics. Unlike the other authors of the traditional Chinese mathematics, Zhu ShiJie(朱世傑) noticed in his SuanXue QiMeng(算學啓蒙, 1299) that the Division Algorithm is a really important concept. In [4], we claimed that Zhu wrote the book with a far more deeper insight on mathematical structures. Investigating the Division Algorithm in SuanXue QiMeng in more detail, we show that his theory of Division Algorithm substantiates his structural apporaches to mathematics.

      • KCI등재

        Mathematics in the Joseon farmland tax systems

        홍성사,홍영희,김창일,Hong, Sung Sa,Hong, Young Hee,Kim, Chang Il The Korean Society for History of Mathematics 2015 Journal for history of mathematics Vol.28 No.2

        The Joseon dynasty (1392-1910) is basically an agricultural country and therefore, the main source of her national revenue is the farmland tax. Thus the farmland tax system becomes the most important state affair. The 4th king Sejong establishes an office for a new law of the tax in 1443 and adopts the farmland tax system in 1444 which is legalized in Gyeongguk Daejeon (1469), the complete code of law of the dynasty. The law was amended in the 19th king Sukjong era. Jo Tae-gu mentioned the new system in his book Juseo Gwan-gyeon (1718) which is also included in Sok Daejeon (1744). Investigating the mathematical structures of the two systems, we show that the systems involve various aspects of mathematics and that the systems are the most precise applications of mathematics in the Joseon dynasty.

      연관 검색어 추천

      활용도 높은 자료

      이 검색어로 많이 본 자료

      해외이동버튼