
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Design of Polycrystalline 3C-SiC Micro Beam Resonators with Corrugation
정귀상,Nguyen Duong The Nhan,Phan Duy Thach 한국전기전자재료학회 2008 Transactions on Electrical and Electronic Material Vol.9 No.5
On the purpose of increasing resonant frequency without sacrificing quality factor as well as much decreasing dimensions, corrugated micro beam resonator based on polycrystalline 3C-SiC films is the applicable solution. In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same–size flat rectangular. With the dimension of 36x12x0.5 µm³, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size but corrugation width of 6 µm and depth of 0.4 µm, the corrugated cantilever reaches the resonant frequency at 1.252 MHz.
정귀상,강경두 東西大學校 2000 동서논문집 Vol.6 No.-
This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point, the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.
전기화학적 식각정지에 의한 고수율 실리콘 박막 멤브레인 제작
정귀상,박진상,이원재,송재성 한국전기전자재료학회 2001 전기전자재료학회논문지 Vol.14 No.3
In this paper, the authors present the fabrication of high-yield Si thin-membranes by electrochemical etch-stop in tetramethyl ammonium hydroxide (TMAH): isopropyl alcohol (IPA):pyrazine solutions. The current-voltage (I-V) characteristics of n- and p-type Si in TMAH:IPA;pyrazine solutions were analysed, repsectively. Open circuit potential (OCP)and passivation potential (PP) of n- and p-type Si, respectively, were obtained and applied potential was selected between n- and p-type Si PPs. The electrochemical etch-stop method was applied to the fabrication of 801 micro-membranes with 20.0 $\mu\textrm{m}$ thickness on a 5" Si wafer. The average thickness of fabricated 801 micro-membranes on one wafer 20.03$\mu\textrm{m}$ and the standard deviation was ${\pm}$0.26$\mu\textrm{m}$. The Si surface of the etch-stopped micro-membranes was extremely flat with no noticeable taper or nonuniformity. The results indicate that use of the electrochemical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes.
측온저항체 온도센서용 Pt-Co 합금박막의 증착과 특성에 관한 연구
정귀상,노상수,Chung, Gwiy-Sang,Noh, Sang-Soo 한국센서학회 1998 센서학회지 Vol.7 No.1
Platinum-Cobalt alloy thin films were deposited on $Al_{2}O_{3}$ substrate by magnetron cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_{2}O_{3}$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : $4.4\;W/cm^{2}$, Co : $6.91\;W/cm^{2}$, working vacuum of 10 mTorr and annealing conditions of $800^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively and the TCR value of Pt-Co alloy thin films with thickness of $3000{\AA}$ were $3740ppm/^{\circ}C$ in the temperature range of $25{\sim}600^{\circ}C$. These results indicate that Pt-Co alloy thin films have potentiality for the RTD temperature sensors.
알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 특성
정귀상,노상수,최영규,김진한,Chung, Gwiy-Sang,Noh, Sang-Soo,Choi, Young-Kyu,Kim, Jin-Han 한국센서학회 1997 센서학회지 Vol.6 No.5
The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analyzed with increasing annealing temperature($400{\sim}800^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to $SiO_{2}$ and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analyzed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater, active area was smaller size, Pt micro heater had better thermal characteristics. The temperature of Pt micro heater with active area, $200{\mu}m{\times}200{\mu}m$ was up to $400^{\circ}C$ with 1.5watts of the heating power.
SOI와 트랜치 구조를 이용한 초저소비전력형 미세발열체의 제작과 그 특성
정귀상,홍석우,이원재,송재성 한국전기전자재료학회 2001 전기전자재료학회논문지 Vol.14 No.3
This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro elelctro mechanical system) applications usign SOI (Si-on-insulator) and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10㎛ thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD (resistance thermometer device) on the same substrate by suing MgO as medium layer. The thermal characteristics of the micro-heater wit the SOI membrane is 280$\^{C}$ at input power 0.9W; for the SOI membrane with 10 trenches, it is 580$\^{C}$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.
인가 바이어스 조건이 전기화학적 식각정지 특성에 미치는 영향
정귀상,강경두,김태송,이원재,송재성 한국전기전자재료학회 2001 전기전자재료학회논문지 Vol.14 No.4
This paper describes the effects of applied bias conditions on electrochemical etch-stop characteristics. THere are a number of key issues such as diode leakage and ohmic losses which arise when applying the conventional 3-electrochemical etch-stop to fabricated some of he MEMS(microelectro mechanical system) and SOI(Si-on-insulator) structures which employ SDB(Si-wafer direct bonding). This work allows to perform anin situ diagnostic to predict whether or not an electrochemical etch-stop would fail due to diode-leakage-induced premature passivation. In addition, it presents technology which takes into account the effects of ohmic losses and allows to calculate the appropriate bias necessary to obtain a successful electrochemical etch-stop.
열처리 조건에 따른 백금박막 측온저항체 온도센서의 특성에 관한 연구
정귀상,노상수,Chung, Gwiy-Sang,Noh, Sang-Soo 한국센서학회 1997 센서학회지 Vol.6 No.2
Platinum thin films were deposited on $SiO_{2}/Si$ and $Al_{2}O_{3}$ substrates by DC magnetron sputtering for RTD (resistance thermometer devices) temperature sensors. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature and time. We made Pt resistance pattern on $Al_{2}O_{3}$ substrate by lift-off method and fabricated Pt-RTD temperature sensors by using W-wire, silver epoxy and SOG(spin-on-glass). In the temperature range of $25{\sim}400^{\circ}C$, we investigated TCR(temperature coefficient of resistance) and resistance ratio of Pt-RTD temperature sensors. TCR values were increased with increasing the annealing temperature, time and the thickness of Pt thin films. Resistance values were varied linearly within the range of measurement temperature. At annealing temperature of $1000^{\circ}C$, time of 240min and thin film thickness of $1{\mu}m$, we obtained TCR value of $3825ppm/^{\circ}C$ close to the Pt bulk value.