RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        핵분열 기체 포획 기능을 갖는 사고저항성 UO<sub>2</sub> 펠렛에서 형성되는 입계상의 미세구조 관찰

        전상채,김동주,김동석,김건식,김종헌,Jeon, Sang-Chae,Kim, Dong-Joo,Kim, Dong Seok,Kim, Keon Sik,Kim, Jong Hun 한국분말야금학회 2020 한국분말재료학회지 (KPMI) Vol.27 No.2

        One of the promising candidates for accident-tolerant fuel (ATF), a ceramic microcell fuel, which can be distinguished by an unusual cell-like microstructure (UO<sub>2</sub> grain cell surrounded by a doped oxide cell wall), is being developed. This study deals with the microstructural observation of the constituent phases and the wetting behaviors of the cell wall materials in three kinds of ceramic microcell UO<sub>2</sub> pellets: Si-Ti-O (STO), Si-Cr-O (SCO), and Al-Si-Ti-O (ASTO). The chemical and physical states of the cell wall materials are estimated by HSC Chemistry and confirmed by experiment to be mixtures of Si-O and Ti-O for the STO; Si-O and Cr-O for SCO; and Si-O, Ti-O, and Al-Si-O for the ASTO. From their morphology at triple junctions, UO<sub>2</sub> grains appear to be wet by the Si-O or Al-Si-O rather than other oxides, providing a benefit on the capture-ability of the ceramic microcell cell wall. The wetting behavior can be explained by the relationships between the interface energy and the contact angle.

      • KCI등재

        사고저항성 핵연료용 세라믹 미소셀 UO<sub>2</sub> 소결체의 Cs 포집반응에 대한 열역학적 평가

        전상채,김건식,김동주,김동석,김종헌,윤지해,양재호,Jeon, Sang-Chae,Kim, Keon Sik,Kim, Dong-Joo,Kim, Dong Seok,Kim, Jong Hun,Yoon, Jihae,Yang, Jae Ho 한국방사성폐기물학회 2019 방사성폐기물학회지 Vol.17 No.1

        As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

      • KCI등재

        Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition

        전상채,이재원,윤주영,조용준 한국방사성폐기물학회 2017 방사성폐기물학회지 Vol.15 No.4

        Processing and equipment were tailored for engineering scale fabrication of UO2 porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, UO2 powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at 1450℃ for 24 h in 4% H2-Ar, the average bulk density of the UO2 Simfuel pellets was 6.89 g·cm-3, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel UO2 porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of UO2 porous pellets for engineering scale pyroprocessing research.

      • KCI등재

        모의 사용후핵연료 조성의 UO2 다공성펠렛 제조 스케일 업

        전상채,이재원,윤주영,조용준 한국방사성폐기물학회 2017 방사성폐기물학회지 Vol.15 No.4

        KAERI의 PRIDE 시설에서 공학규모의 전해환원용 원료물질인 UO2 다공성펠렛 제조를 위해 공정과 장치를 최적화시킨 내 용을 다루었다. UO2 분말과 별도로 attrition 밀링된 대용산화물 분말을 출발분말로, 정밀 칭량을 통해 사용후핵연료 조성을 모사하였다(Simfuel). Simfuel 분말은 각각 tumbling mixer로 혼합하여 균질화 하고, rotary press로 성형하여 furnace를 이 용해 소결하였다. 4% H2-Ar 분위기에서 1450℃ 24시간 고온 열처리하여 제조된 소결펠렛은 6.89 g·cm-3의 벌크밀도를 가 지며 이는 후속 전해환원 공정의 요구에 부합한다. 소결된 다공성펠렛의 미세구조 관찰을 통해 다공성 기지상과 함께 산화/ 금속 석출물이 관찰되어 사용후핵연료의 상이 모사됨을 확인하였다. 본 결과는 향후 공학규모 이상의 파이로 연구를 위한 UO2 다공성펠렛 제조에 중요한 기초자료로 활용 될 것이다. Processing and equipment were tailored for engineering scale fabrication of UO2 porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, UO2 powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at 1450℃ for 24 h in 4% H2-Ar, the average bulk density of the UO2 Simfuel pellets was 6.89 g·cm-3, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel UO2 porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of UO2 porous pellets for engineering scale pyroprocessing research.

      • KCI등재

        사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가

        전상채,김건식,김동주,김동석,김종헌,윤지해,양재호 한국방사성폐기물학회 2019 방사성폐기물학회지 Vol.17 No.1

        As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have UO2 grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the UO2 pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (ΔGCs) and oxygen potential (ΔGO2) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture. 사고저항성 핵연료의 일환으로 UO2 입자가 세라믹 셀 벽으로 둘러싸인 미세구조를 갖는 세라믹 미소셀 UO2 소결체를 개발중이다. 이는 핵분열생성물들을 UO2 펠렛 내에 포집하여 펠렛 외부로의 방출을 저감함으로써 봉내압 상승을 완화하고 응력부식균열 발생률을 낮춘다. 생성량이나 방사능 측면에서 위험한 핵분열생성물 중 하나로 여겨지는 세슘은 세라믹 미소셀소결체 내에서 셀 물질과 화학반응 하여 포집될 수 있다. 따라서, 세슘 포집능은 해당 화학반응의 열역학적, 속도론적 특성에 의해 결정된다. 역으로, 미소셀 소결체의 조성설계 시 해당 반응에 대한 열역학적 예측이 필수적이다. 본 연구는 세라믹현재 개발 중인 여러 미소셀 조성(Si-Ti-O, Si-Cr-O, Si-Al-O)에 대해 세슘의 포집능을 평가하는 열역학적 계산을 다룬다. 계산에 앞서 먼저 HSC Chemistry를 이용해 세슘과 셀 물질의 물리/화학적 상태를 정의한 후, LWR 정상운전 모사환경에서 계산된 세슘포텐셜(ΔGCs)과 산소포텐셜(ΔGO2)에 근거하여 세슘포집 반응성을 평가하였다. 계산 결과에 근거하면, 세슘 포집반응은 상기 모든 조성에서 자발적일 것으로 예상되며 이로써 조성설계의 근거를 제시함과 동시에 세슘의 포집능을 평가하는 효과적인 방법을 제공한다.

      • KCI등재

        Scaling Up Fabrication of UO<sub>2</sub> Porous Pellet With a Simulated Spent Fuel Composition

        전상채,이재원,윤주영,조용준,Jeon, Sang-Chae,Lee, Jae-Won,Yoon, Joo-Young,Cho, Yung-Zun Korean Radioactive Waste Society 2017 방사성폐기물학회지 Vol.15 No.4

        Processing and equipment were tailored for engineering scale fabrication of $UO_2$ porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, $UO_2$ powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at $1450^{\circ}C$ for 24 h in $4%\;H_2-Ar$, the average bulk density of the $UO_2$ Simfuel pellets was $6.89g{\cdot}cm^{-3}$, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel $UO_2$ porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of $UO_2$ porous pellets for engineering scale pyroprocessing research.

      • KCI등재

        Yttrium이 첨가된 BaTiO<sub>3</sub>에서 형성된 core/shell 구조에서 shell의 TCC 거동: 독립적 관찰

        전상채,Jeon, Sang-Chae 한국결정성장학회 2020 한국결정성장학회지 Vol.30 No.3

        MLCC(Multi-Layer Ceramic Capacitor)의 유전체 층에 사용되는 BaTiO<sub>3</sub> 입자는 안정한 TCC(Temperature Characteristics of Capacitance) 거동을 갖기 위해 core/shell 구조를 갖는다. 지금까지 shell의 특성은 core/shell 구조의 전체 특성에서 유추해 왔다. 이는 core/shell 구조가 겨우 수 ㎛의 작은 크기로 shell 특성만 구별해서 측정하기가 어렵기 때문이다. 본 실험에서는 micro-contact법을 이용하여 확산쌍 시편의 계면에 형성된 확대된 core/shell 구조에 Pt 전극을 증착하여 35~135℃ 에서 shell 영역의 독립적인 TCC 거동을 측정하였다. 그 결과, 65℃에서 최대 유전율 값을 갖는 완만한 피크의 확산 상전이(Diffusion Phase Transition) 거동인 core의 특성과 구별되는 거동을 관찰하였으며, 이는 core/shell 구조의 온도-유전거동을 묘사하는 모델링에서 실험 자료로 활용될 것으로 본다. Grains in the BaTiO<sub>3</sub>, which is used for a dielectric layer in MLCC(Multi-Layer Ceramic Capacitor) are necessary to form core/shell structure for a stable TCC(Temperature Coefficient of Capacitance) behavior. The shell property has been deduced from the whole TCC behavior of core/shell structure due to its tiny size, ~ few ㎛. This study demonstrates the individual TCC behavior of the shell phase measured by micro-contact measurement in a temperature range between 35 and 135℃. Pt electrode pairs deposited on an enlarged core/shell structure in a diffusion couple sample made the measurement possible. As a result, the DPT (Diffusion Phase Transition) behavior of the shell phase was revealed as a different TCC behavior from that of the core: a broad peak with T<sub>m</sub> at 65℃. This would be also useful experimental data for a modelling that depicts dielectric-temperature behavior of core/shell structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼