RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구

        이준현 한국비파괴검사학회 1993 한국비파괴검사학회지 Vol.13 No.2

        분말 야금법에 의해 제조된 SiC휘스커 강화 2124알루미늄 복합재료(SiCw/2124 Al)에 피로하중이 작용할 경우 복합재료의 계면에 있어서의 전위의 집적현상으로 인해 피로손상에 매우 민감하다. 그러나 이와같은 계면에 있어서의 전위의 집적현상으로 발생하는 피로미소균열의 검출 및 그 특성 평가에 대해서는 종래의 초음파 기술로서는 많은 문제점이 지적되고 있다. 본 논문은 SiC 휘스커 강화 알루미늄 복합재료에 있어서의 초기 피로손상을 평가하기 위하여 최근 새로운 비파괴 기법인 선집속 빔초음파 현미경의 적용 가능성에 대하여 연구하였다. 이를 위해 SiCw/2124 Al 복합재료 시험편에 대해 하중제어하에서 누설표면파와 누설 유사표면파의 속도를 V(z)곡선으로부터 FFT해석으로 구해 그 특성에 대하여 검토하였다. 또 주파수 5MHz에 대한 종래의 표면파 기법에 의하여 얻어진 결과와 고주파 초음파 현미경에 의하여 구해진 결과를 비교 검토 하였다. Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile -up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describe the applicability of and acoustic microscope with Line-Focus-Beam(LEB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

      • SCOPUSKCI등재

        저면산란 초음파 신호 및 신경회로망을 이용한 균열크기 결정

        이준현,최상우,Lee, Jun-Hyeon,Choe, Sang-U 대한기계학회 2000 大韓機械學會論文集A Vol.24 No.1

        The role of quantitative nondestructive evaluation of defects is becoming more important to assure the reliability and the safety of structure, which can eventually be used for residual life evaluation of structure on the basis of fracture mechanics approach. Although ultrasonic technique is one of the most widely used techniques for application of practical field test among the various nondestructive evaluation technique, there are still some problems to be solved in effective extraction and classification of ultrasonic signal from their noisy ultrasonic waveforms. Therefore, crack size determination through a neural network based on the back-propagation algorithm using back-scattered ultrasonic signals is established in this study. For this purpose, aluminum plate containing vertical or inclined surface breaking crack with different crack length was used to receive the back-scattered ultrasonic signals by pulse echo method. Some features extracted from these signals and sizes of cracks were used to train neural network and the neural network's output of the crack size are compared with the true answer.

      • SCOPUSKCI등재

        재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석

        이준현,이서일,박윤원,Lee, Jun-Hyeon,Lee, Seo-Il,Park, Yun-Won 대한기계학회 2000 大韓機械學會論文集A Vol.24 No.1

        In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

      • SCOPUSKCI등재

        경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구

        이준현,이서일,Lee, Jun-Hyeon,Lee, Seo-Il 대한기계학회 1999 大韓機械學會論文集A Vol.23 No.11

        Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

      • 음향방출을 이용한 mortar 재료의 미시적 파괴거동에 관한 연구

        이준현,이진경,장일영,윤동진 한국콘크리트학회 1998 콘크리트학회지 Vol.10 No.6

        고체내부의 미소파괴시 발생하는 탄성파 방출을 이용하는 음향방출기법은 구조물 또는 재료 내부의 미시적 변형기구를 이해하는데 매우 유익한 수단으로 최근 각 분야에서 다양하게 응용되고 있다. 따라서 본 연구에서는 모르타르 부재의 휨재하 시험시 부재 내부에 발생하는 미시적 손상거동 및 파괴특성을 시험시 연속적으로 모니터링한 AE 신호특성으로부터 평가하였다. 나아가 삼각법을 이용한 2차원 AE 발생원 위치추정으로부터 시험체 노치선단 주변에 대한 AE 발생원 위치를 명확히 하였으며 이들 결과로부터 미소균열의 성장 거동을 연속적으로 모니터링 하였다. It is well recognized recently that acoustic emission, which is an elastic wave generated from rapid release of elastic energy in steressed solids, is very useful tool for on-line monitoring of microscopic behavior of deformation of material. In this study, three point bend test was performed to evaluate the microscopic damage progress during the loading and failure mechanism of mortar beam by monitoring the characteristic of AE signal. The relationship between AE characteristic and microscopic failure mechanism is discussed. In addition 2 dimensional AE source location based on triangular method was also done to monitor the intiation and propagation of micro crack around notch tip of mortar beam. It was shown that AE source location was very effective to predict the growth behavior of micro crack in mortar beam specimen.

      • SCOPUSKCI등재

        레이저 유도 초음파 및 자기보상 기법을 이용한 재료의 표면균열 깊이 비파괴 평가

        이준현,최상우,하상봉,Lee, Jun-Hyeon,Choe, Sang-U,Ha, Sang-Bong 대한기계학회 2002 大韓機械學會論文集A Vol.26 No.4

        It is required to evaluate nondestructively the crack depth of surface-breaking cracks for the assurance of safety of structure. Optical generation of ultrasound produces well defined pulses with a repeatable frequency content, that are free of any mechanical resonances; they are broad band and are ideal for the measurement of attenuation and scattering over a wide frequency range. Self-calibrating surface signal transmission measurement is very sensitive and practical tool for surface-breaking crack depth. In this paper, the self-calibrating technique by laser-based ultrasound is used to evaluate the depth of surface-breaking crack of material. It is suggested that the relationship between the signal transmission and crack depth can be used as a practical model for predicting the surface-breaking crack depths from the signal transmission measured in structure.

      • SCOPUSKCI등재

        알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석

        이준현,이봉수,이민래,Lee Joon-Hyun,Lee Bong-Soo,Lee Min-Rae 대한기계학회 2005 大韓機械學會論文集A Vol.29 No.10

        The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼