RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimizing growth conditions for glucosinolate production in Chinese cabbage

        심준용,김하영,김도균,이예설,정선옥,이왕희 한국원예학회 2018 Horticulture, Environment, and Biotechnology Vol.59 No.5

        Glucosinolates are well known functional food components that were discovered in Cruciferae and have been the object of study from diverse disciplinary perspectives, including metabolism, quantitative analysis, and breeding. However, the effects of the growth environment and post-harvest processes on glucosinolate production in Chinese cabbage are not well studied. Hence, this study aimed to identify the major factors that affect glucosinolate accumulation in Chinese cabbage during growth, and to optimize growth conditions in order to maximize glucosinolate content. Therefore, we measured glucosinolate content in cabbage grown in five environmental conditions that altered electrical conductivity, pH, cultivation time, temperature, and relative humidity. We used principal component analysis (PCA) to identify the variables primarily affecting growth, followed by response surface methodology (RSM) to determine optimal growth conditions that maximize glucosinolate content in Chinese cabbage. Results from PCA indicated that cultivation time, temperature, and relative humidity were the principal components that explained 85.8% of the total variance, suggesting these are the most significant environmental factors that affect glucosinolate accumulation. Moreover, RSM indicated that the total model for evaluating glucosinolate content was significant (R2 = 0.934) and showed that the optimal temperature and relative humidity for maximizing glucosinolate content are 28 °C, and 66%, respectively. This study provided practical information of optimal condition for producing functional Chinese cabbage intensifying glucosinolate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼