RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        하중 제어 모델에서의 미사일 유도 법칙 하중 제어에 관한 연구

        왕현민(Wang, Hyun-Min),유정봉(You, Jeong-Bong) 한국산학기술학회 2008 한국산학기술학회논문지 Vol.9 No.6

        현재 움직이는 물체의 운동을 제어하기 위해 하중이라는 개념의 사용이 시도되고 있다. 하중이라는 제어 개념으로 불확실성으로 인한 비선형성을 포함한 시스템에서 신뢰성 있는 제어값을 찾기 위해 MIN 설계 방법이 제안되었다. 이러한 MIN설계 방법에서는 기존의 선형화 방법에 의한 상태방정식에서의 제어값을 찾는 문제와 달리 비선형 하중 모텔에서 직접 제어 값을 찾는 방식을 보이고 있다. 본 논문에서는 미사일 하중 운동역학과 유도 기하학의 비선 형 역학을 고려한 하중 제어값을 찾는다. 즉 시선각 또는 미사일의 받음각 변화에 따른 진행방향에 대한 미사일의 속 도 조건을 만족하기 위한 제어값과 표적을 따라가기 위한 선회 각도을 위한 제어값을 구한다. 즉 본 논문에서는 미사 일 시스템과 추적 동역학에서 하중 제어값을 구해본다. 이렇게 구해진 하중 제어값으로 유도 제어 법칙을 비선형 시스템에서 직접 쉽게 구할 수 있음을 확인해 보았다. Recently it is tried to use load control for maneuver moving object. MIN design method proposed to solve control problem of nonlinear system using load concept. Min design method shows direct method for finding control value on the load control model. In this paper, is shown load control value for problem of line of sight on missile guidance. The load control value keep given velocity of missile and angle of attack for tracking target.

      • KCI등재

        민(MIN) 설계 방법을 이용한 무인기 수평이동제어 알고리즘에 관한 연구

        왕현민(Hyun-Min Wang),허경무(Kyung-Moo Huh),우광준(Kwang-Joon Woo) 대한전자공학회 2009 電子工學會論文誌-SC (System and control) Vol.46 No.3

        최근 무인기의 형태는 다양한 형태로 개발되고 있으며, 탑재 장비의 고성능 소형화를 바탕으로 무인기는 소형화 되고 있다. 이러한 소형화되고 일반적인 형태가 아닌 무인기 개발에 있어, 기존의 개발방법으로는 이러한 비선형적인 요소로 인하여 정확한 모델링 및 제어기 알고리즘의 정형화하기가 어렵다. 따라서 본 논문에서는 기존이 비행체 개발 방법이 아닌, 하중 제어 개념을 적용한 Min 설계 방법의 첫 번째 단계로, 원통형 무인기에 적용하여, 수평 비행 조건과 특성 그리고 제어기 설계 알고리즘을 찾아보았다. 이러한 Min 설계 방법은 고성능 컴퓨터를 사용한 무인기 개발에 있어 실시간 시뮬레이션을 통한 비용절감과 개발기간을 단축시킬 수 있다. Recently, UAV(unmanned aerial vehicle) has evolved into various figure and become miniaturized. On using existing design method, it is hard to make modelling and standardizing design of flight control system of the figure including cylinder like pipe. These problems are caused by uncorrect express of nonlinearity in controller design. Therefore, it is developed through step of correct modelling and simulation on real time using high efficiency computer in aircraft development of various figure. This is reducing period and expense of aircraft development. For the shake of solving these problems, Min-design method has been devised by H.M. Wang. In this paper, an object of control is cylindrical UAV instead of the general figure of aircraft. It was analyzed flight condition, specification about level flight of the UAV and was presented algorithm to find control value.

      • KCI등재

        비행 물체의 유도제어 시스템 설계를 위한 하중(중력수) 제어 모델의 성능분석

        왕현민(Hyun-Min Wang),우광준(Kwang-Joon Woo),허경무(Kyung-Moo Huh) 대한전자공학회 2009 電子工學會論文誌-SC (System and control) Vol.46 No.1

        기존의 방법에서는 비선형 운동 물체의 운동 방정식을 선형화하므로써 비행체의 운동 상태방정식을 구하고, 각 제어 기관에 따라 전달함수를 구하여 안정성 판별과 더불어 제어기를 설계하였다. 이러한 설계 방법으로는 일반적인 비행기와 같은 형태, 비행 환경이 급격하게 변하지 않고 속도가 빠르지 않는 비행체의 유도/제어기 설계에 많이 사용되어 많은 성능을 발휘할 수 있다. 그러나 이러한 설계 방법은 통상적이지 않는 비행체 형태뿐만 아니라 빠른 속도에서 급격한 움직임을 갖는 비행체에서는, 기존의 유도/제어기 설계 방법으로는 이러한 비선형성으로인하여 제어성(경로문제)과 안정성(안정화문제)을 동시에 충족할 만한 성능을 발휘 할 수 없다. 따라서 본 논문에서는 이러한 불확실성이 내포된 비행체 제어 문제에서 제어성과 안정성을 동시에 충족시키기 위한 과정 중 먼저 제어성 문제를 해결하기 위한 비행체 제어성을 분석하고 모델을 제시한다. 또한 본 논문에서 비행체 모델과 동역학 모델에서 제어 요소로서 하중(중력수)을 설정하고 비행 특성에 따른 제어요소 값을 살펴본다. 이것은 Min 설계 방법 1단계이다. In conventional method, flight model is discribed to differential equation by linealization of nonlinear object motion equation. As state equation from differential equation of moving object, the controller is designed by transfer functions of each module under discrimination of stability criteria. But this conventional method is designed under limitation of nonlinearity from object's shape and speed. In other word, The greater part of guidance/navigation system was satisfied with the result of good performance for normal figure of flight object, not sudden changed flight condition, not high speed. But it is not able to give full play to its ability on flight object which has abnormal figure, sudden changeable motion, high speed. Therefore, in this paper was presented performance analysis of load control model for navigation/guidance system on flying object being uncertainty, non-linear like abnormal figure, sudden changeable motion, high speed and is presented method of trajectory control(controllability) ahead of controllability and stability to achieve flight mission. In other word, this paper shows the first step of Min-design method and flight control model.

      • KCI등재

        하중모델을 이용한 자동차 운동 분석과 자율 예측 시스템 알고리즘

        왕현민(Hyun-Min Wang),우광준(Kwang-Joon Woo) 대한전자공학회 2010 電子工學會論文誌-SC (System and control) Vol.47 No.4

        최첨단 항공 기술을 3차원 공간이 아닌 평면에서 움직이는 자동차에 적용하므로써, 미래자동차의 가장 큰 목표인 “안전성”을 크게 향상시킬 수 있으며, 무인 자율 자동차 개발에 한발 더 다가갈 수 있다. 이것은 디지털 비행제어시스템에서 항공기의 운동 역학 모델이 구현되어, 자율 비행이 가능하도록 제어값이 찾아지므로 이루어진다. 이러한 첨단 항공 기술을 평면상에서 운동하는 자동차에 적용한다면, 무인 항공기와 같이 자율 운행할 수 있도록 제어 될 수 있을 것이다. 본 논문에서는 첨단 항공기의 비행 제어 시스템 모델로 사용되는 하중 제어 모델을 자동차에 적용하여 자동차의 운동 역학을 재해석하고, 하중제어 모델에서 자동차 움직임에 따른 승차감 분석을 한다. 또한 승차감 상향을 위한 해결 방법을 제시한다. 그리고 자동차의 자율 주행, 차선 변경 및 지능형 제동 시스템을 구현하기 위한 하중 제어 모델의 사용 예를 제시한다. Appling high technology of aerospace to automobile, so it is able to progress safety which is a goal of future automobile and to approach development of self-control automobile. This is realized dynamic model of airplane at DFCS(Digital Flight Control System). The DFCS calculates control values for self-control flight. If this high technology applies to automobile, then it is able to be maneuvered automobile like UAV's self-control flight. In this paper is reanalyzed automobile dynamic applied load control model used high-tech of airplane. It analyzes riding comfortable according to movement of automobile using the load control model, presents method of solution for improvement riding comfortable and presents example of self-control system used the load control model for self-control driving.

      • 예측 모델 제어기 설계에서의 예측 시간의 최적화 및 예측 샘플링 시간의 최적화에 대한 연구

        왕현민(Hyun-Min Wang),우광준(Kwang-Joon Woo),허경무(Kyung-Moo Huh) 대한전기학회 2008 대한전기학회 학술대회 논문집 Vol.2008 No.10

        The real time modeling of dynamic system on adaptive control system is very important for flying control system(FCS). Using traditional method, it is required moch calculation load for integral/differential at control system. Therefore, It is very important theme of study in these days to find algorithms for integration/differential at FCS These algorithms for integral/differential influence strongly stability/reliability to control flying object. In this paper, we present optimal predictive sampling time for reduce calculation load at FCS and optimal predictive time on general cost function by applying adapti ve control method.

      • KCI등재

        비선형 단진자 운동의 하중 모델 적용과 하중 제어 분석

        왕현민(Hyun-Min Wang),우광준(Kwang-Joon Woo) 大韓電子工學會 2010 電子工學會論文誌-SC (System and control) Vol.47 No.3

        단진자 운동의 분석은 일반적으로 분석하며, 분석 결과는 자료에서 찾아볼 수가 있다. 일반적으로 단진자 운동의 해석은 뉴턴 제2법칙에 의해 선형화된 모델에서 속도, 주기, 시간에 따른 각도등이 계산된다. 본 논문에서는 단진자 운동을 비선형 하중제어 모델로 구현해 진자의 주기 운동을 해석한다. 즉 운동하는 진자의 위치에 따라 실시간으로 변화하는 하중을 분석해본다. 그리고 운동하는 진자의 위치 제어를 위해 필요한 하중 제어 값을 찾아보고, 마지막으로 선형화된 모델에서 구해진 값과 비선형 모델에서 구해진 값과 비교한다. 이와 같이 진자의 운동 및 비행체를 포함한 운동하는 물체를 제어하기 위해 비선형 하중제어 모델이 다양하게 적용될 수 있음을 나타낸다. We are able to find many materials of pendulum dynamic/analysis using linearized model. Usually, analysis of pendulum is to calculate for velocity, period and angle by linearized model on Newton’s law. In this paper, analyzed periodical movement of pendulum using nonlinear load model. That is, analyzed load value according to location of moving pendulum at real time. And for the shake of maneuver for pendulum's location, found load control value and compared result of linearized mode with nonlinear model. The result makes know that it is possibility of nonlinear load control model to apply to various model of movement object including flight object, pendulum and etc.

      • KCI등재

        비선형 하중제어 모델의 예측기 설계 및 알고리즘 구현을 위한 수치연산 오차 분석과 평가

        왕현민(Hyun-Min Wang),우광준(Kwang-Joon Woo) 大韓電子工學會 2009 電子工學會論文誌-SC (System and control) Vol.46 No.6

        운동하는 물체를 제어하기 위한 제어이론은 디지털 컴퓨터(임베디드시스템)를 이용하여 복잡한 신경망 이론, 인공지능 이론, 비선형 모델 예측 제어 이론등이 제어기 설계 단계에서 구현되고 있다. 비행제어 시스템의 비선형 모델 예측 제어 예측기는 구현하는 컴퓨터의 성능과 각종 모듈의 응용프로그램을 하드실시간(Hard Real-Time)으로 처리할 수 있도록 응답 시간을 충족하여야 한다. 이와 동시에 제어 시스템에의 성능을 충분히 발휘할 수 있는 정확성도 고려하여야 한다. 수학적 영역에서의 오류는 전체 알고리즘 구현에 영향을 준다. 그러나 이러한 수학적 오류 발생 요인은 예측기에서 생성되는 파라미터에서 최종 정확도 계산에 가끔 고려하지 않는다. 본 논문에서는 비행체 제어를 위한 디지털 제어 시스템에서 하드실시간 하중제어 모델 예측기를 구현하고, 알고리즘의 응답시간을 살펴본다. 또한 이에 따른 정밀도를 보장하는 고효율 예측기를 구현하는 알고리즘을 살펴본다. 예측기는 하중 제어 모델에서 오일러 방법, Heun 방법, Runge-kutta 방법, 테일러 방법의 수치적분 알고리즘을 사용하여 구현된다. For the shake of control for movement object, control theory like neural network, nonlinear model predictive control(NMPC) is realized on digital high speed computer. Predictor of flight control system(FCS) based nonlinear model predictive control has to be satisfied with response for hard real-time to perform applications on each module in the FCS. Simultaneously, It gives a serious consideration accuracy to give full play to FCS's performance. Error of mathematical aspect affects realization of whole algorithm. But factors of bring mathematical error is not considered to calculate final accuracy on parameter of predictor. In this paper, Predictor was made using load control model on the digital computer for design FCS at hard real-time and is shown response time on realization algorithm. And is shown realization algorithm of high effective predictor over the accuracy. The predictor was realized on the load control model using Euler method, Heun method, Runge-Kutta and Taylor method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼