http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
한국어 감정분석 코퍼스를 활용한 양상정보 기반의 감정분석 연구
신효필(Hyopil Shin),김문형(Munhyong Kim),박수지(Suzi Park) 사단법인 한국언어학회 2016 언어학 Vol.0 No.74
This study develops a practical application of language resources from the Korean Sentiment Analysis Corpus (KOSAC) for sentiment analysis research. With this in mind, based on their sentiment properties and the probabilistic factors of annotated expressions from KOSAC, we extracted annotated expressions and refined them to be a sentiment analysis research resource. This study attempted to break away from simple calculation methods dependant on the distribution of lexical polarity items seen in previous research. Additionally, in order to perform more sophisticated sentiment analysis, we attempted to introduce pragmatic information which includes modality. In order to achieve this, we cataloged expressions that include pragmatic information related to the speaker"s attitude, based on their relative probability in KOSAC. After doing so, this study shows a practical application of this new language resource to subjectivity analysis research. When using this new resource, this research demonstrates an accuracy improvement of around 6%. This demonstrates very clearly that, in addition to polarity items, there exists a need to include a variety of aspects and lexical information when doing this type of research. Moreover, this extraction of sentiment expressions, depending on their semantic and pragmatic properties, not only shows an additional use of KOSAC, but also establishes a new resource in the field of sentiment analysis.
KOLON(the KOrean Lexicon mapped onto the Mikrokosmos ONtology): 한국어 어휘의 미크로코스모스 온톨로지로의 사상과 언어 자원의 결합
신효필(Hyopil Shin) 사단법인 한국언어학회 2010 언어학 Vol.0 No.56
The KOLON(KOrean Lexicon mapped onto the Mikrokosmos ONtology) is an output of our work of mapping Korean words onto the Mikrokosmos ontology with a view to building a Wordnet for Korean. Unlike other Wordnet-related resources, the KOLON aims at taking fully advantage of properties of a concept represented in a frame by inheriting them to lexicons. We mapped about 24,858 Korean words consisting of 7,386 nouns, 13,397 verbs and 4,075 adjectives so far. Since we keep adding lexical items and cleaning original mappings, the numbers are subject to change. Synonyms are grouped together for each concepts. The big difference between the KOLON and other Korean Wordnet-related resources in terms of synonyms comes from granularity. While other resources show a fine grained and very restricted set of synonyms, the work of mapping Korean words onto the Mikrokosmos ontology results in a wide coverage of synonym set, because a concept can cover many lexical items in a cognitive perspective. described the mapping procedure in line with parts-of-speech, and pointed out strengths and weaknesses of the work. And I compared the KOLON with another Korean Word net, KorLex, and showed the ideological differences between the two efforts. I contend that the work described here can be a useful resource for a natural language processing and theoretical Linguistic research. All the information and up-to-date lexical items can be checked on the website, http://word.snu.ac.kr/kolon.
T-MERGE 연산자에 기반한 분산 토픽맵의 자동 통합
김정민(Jungmin Kim),신효필(Hyopil Shin),김형주(Hyoungjoo Kim) 한국정보과학회 2006 정보과학회논문지 : 소프트웨어 및 응용 Vol.33 No.9
온톨로지 통합은 두 소스 온톨로지들을 통합하여 하나의 새로운 온톨로지를 생성하는 과정으로서 시맨틱 웹, 데이타 통합, 지식관리시스템 등 여러 온톨로지 응용 시스템에서 중요하게 다루는 연구주제이다. 그러나 과거의 연구들은 대부분 두 소스 온톨로지들 사이에 의미적으로 대응되는 공통 요소를 효과적으로 찾기 위한 온톨로지 매칭 기법에 집중되어 있으며 매핑 요소들을 통합하는 과정에서 발생하는 문제를 정의하고 해결하는 방법에 대해서는 간과하고 있다. 본 논문에서는 매칭 프로세스에 의해 주어진 매핑 결과에 기반하여 두 소스 온톨로지들을 통합해 나가는 상세한 통합 프로세스를 정의하고 매핑 요소들 사이에 존재하는 통합 충돌의 유형에 대한 분류 체계 및 충돌을 탐지하고 해결하기 위한 기법을 제안한다. 또한 충돌의 탐지 및 해결을 포함하여 통합 과정을 캡슐화하는 T-MERGE 연산자와 통합 과정의 기록과 오류 복구를 위한 MergeLog를 설계 및 구현한다. 제안하는 통합 모듈의 성능을 보이기 위해 동, 서양 철학 온톨로지들과 야후 및 네이버 백과사전의 일부를 온톨로지로 구현하여 실험 데이타로 활용하였으며 그 결과 전문가의 수작업에 의한 온톨로지 통합과 동일한 결과를 적은 시간과 노력으로 얻을 수 있음을 보인다. Ontology merging describes the process of integrating two ontologies into a new ontology. How this is done best is a subject of ongoing research in the Semantic Web, Data Integration, Knowledge Management System, and other ontology-related application systems. Earlier research on ontology merging, however, has studied for developing effective ontology matching approaches but missed analyzing and solving methods of problems of merging two ontologies given correspondences between them. In this paper, we propose a specific ontology merging process and a generic operator, T-MERGE, for integrating two source ontologies into a new ontology. Also, we define a taxonomy of merging conflicts which is derived from differing representations between input ontologies and a method for detecting and resolving them. Our T-MERGE operator encapsulates the process of detection and resolution of conflicts and merging two entities based on given correspondences between them. We define a data structure, MergeLog, for logging the execution of T-MERGE operator. MergeLog is used to inform detailed results of execution of merging to users or recover errors. For our experiments, we used oriental philosophy ontologies, western philosophy ontologies, Yahoo western philosophy dictionary, and Naver philosophy dictionary as input ontologies. Our experiments show that the automatic merging module compared with manual merging by a expert has advantages in terms of time and effort.