RISS 학술연구정보서비스

다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        병자호란 시기 강화도 함락 당일 염하수로의 조석과 조류 추산

        변도성,김효원,구범진 한국과학사학회 2017 한국과학사학회지 Vol.39 No.3

        On 16 February 1637, Qing troops landed on Ganghwa Island and occupied Ganghwa Castle. According to the conventional narrative, a few Joseon warships bravely fought in vain to deter the enemy from crossing the shallow, narrow Yeomha Waterway while the main fleet cowardly ran away. A close investigation of firsthand accounts of this battle, however, reveals that no Joseon warships blocked this waterway during the Qing ferryboats’ advance. Here the question arises: What kept Joseon’s naval warships from entering this waterway while the Qing boats were able to cross? In exploring possible answers, Joseon's records indicate that the presence and timing of strong tidal currents might have been a crucial obstacle to the warships’ movement. Given the substantive differences in accounts between Joseon and Qing, this paper attempts to verify which account is more accurate, by hindcasting the paleo-tidal currents and tides (PTCT) of the day via two methods: a conventional harmonic prediction method and a correct tidal species modulation with tidal constant correction method. The PTCT results in general, and the timing of the hindcast high tide and slack water period (around 10:30 am) in particular, tally with the Joseon account. Moreover, our results provide new evidence to support the detailed reconstruction of events surrounding the Qing troops’ 1637 landing operation.

      • KCI등재

        국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양․기상 자료 내려 받기 및 오류 알림 기능

        변도성,서광호,박세영,정광영,이주영,최원진,신재암,최병주 한국해양학회 2017 바다 Vol.22 No.3

        이 기술노트는 국립해양조사원에서 2012년부터 지역해(동해, 황·동중국해) 수치예측시스템 자동수행 운영체계를 구축하면서 확보한 기술 중 매일 특정시각에 외부 해양·기상자료(HYCOM, NOAA/NCEP GFS)를 안전하게 받는 방법과 단문 메시지 서비스(Short Message Service)를 이용하여 예측시스템 수행 오류 시에 신속하게 상황을 파악할 수 있는 휴대전화 알림 기능에 관해 기술하였다. 이들 기본 기술과 운영시스템 구성 기본 개념은 지역해와 연안 수치예측시스템 자동 수행체계를 구축할 때 유용하게 사용될 것이다. 지역해 해양예측시스템, 운용해양시This technical note provides technical guide on two issues associated with establishing automatically running regional ocean prediction systems in the Korea Hydrographic and Oceanographic Agency: (1) download of daily ocean and atmospheric prediction data (i.e., HYCOM and NOAA/NCEP GFS data), which are provided by outside institutions, used for initial state field, surface and boundary forcing data for regional ocean models according to the daily time schedule and (2) error notification to numerical model managers through Short Message Service (SMS). This technical guide is based on our working experience during establishing and operating regional ocean prediction systems for the East Sea and the Yellow-East China Sea since 2012. In conclusion, these basic techniques will be useful for anyone to establish automatically running regional and coastal ocean prediction systems.스템, 단문 메시지 서비스, 시간 동기화

      • KCI등재

        이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정

        변도성,김효원,이주영,이은일,박경애,우혜진 한국해양학회 2018 바다 Vol.23 No.4

        Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values (–0.001 m s-1) and Root Mean Square Deviations (RMSD, 0.122 m s-1). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the ‘LMS without ’ produced the best results, with only 0.191 m s-1 of bias and 1.111 m s-1 of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<0.0001 m s-1) and RMSD (<0.012 m s-1) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights () based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new  parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and  formulas within conventional wind profile formulas for situations characterized by strong wind (≥33 m s-1) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ≤25 m s-1. 운용용으로 사용되는 대부분의 풍속자료는 10 m 기준 고도에서 측정 또는 생산된 자료이다. 이 연구는 이어도 해양과학기지 42.3 m 고도의 옥상 등대에서 측정 중인 풍속을 기준 고도의 풍속으로 변환시켜 국립해양조사원 누리집을 통해 실시간으로 제공하기 위한사전 연구이다. 이를 위해 2015년에 이어도 기지에서 관측한 풍속을 대표적인 네 종류의 풍속 변환식 ― 멱법칙식, 두 종류의 중립벽 로그법칙식(항력계수형, 거칠기 높이형), 대기 안정도 효과를 고려한 벽 로그법칙모델(안정도 고려 거칠기 높이형) ―에 적용하였다. 관측 바람을 평가하는데 많이 사용되는 ‘안정도 고려 거칠기 높이형’ 벽 로그법칙모델의 결과와 나머지 풍속 변환식 결과들을서로 비교하였다. 그 결과 ‘거칠기 높이형’ 벽 로그법칙식과 ‘안정도 고려 거칠기 높이형’ 벽 로그법칙모델 간 편향과 평균 제곱근 편차는 각각 –0.001 m s-1와 0.122 m s-1로 가장 낮아 실시간 현업 운용 측면에서 상호 보완적으로 이 두 변환식을 함께 사용하는 것이바람직하다는 결론을 도출하였다. 또한 이어도 해역에서 조석에 의한 풍속 관측 고도 변화가 풍속 변환에 미치는 영향을 분석하였다. 이들 변환식에 대한 조석 효과 고려 전후에 대한 비교 실험 결과, 편향과 평균 제곱근 편차는 각각 <0.0001 m s-1와 <0.012 m s-1로그 영향은 미미하였다. 대기 표면 거칠기 높이를 사용하는 ‘거칠기 높이형’ 벽 로그법칙식과 ‘안정도 고려 거칠기 높이형’ 벽 로그법칙모델을 이용하여 간편 풍속 변환식의 필수 입력값인 표면 거칠기 높이 값의 적절성에 관해 논의하였으며, 풍속 변환 정확도를향상시킬 수 있는 표면 거칠기 높이 계산식을 제시하였다. 또한 인공위성 산란계(ASCAT) 풍속자료와 네 종류의 중립 연직 풍속 변환식들의 결과를 비교하여 이들 중 ‘안정도 고려 거칠기 높이형’ 벽 로그법칙모델에서 안정도 항을 뺀 풍속 변환 모델의 정확도가더 낫다는 결과를 제시하였다. 끝으로 이들 종래 25 m s-1 이하 풍속에 최적화된 풍속 변환식들로부터 바람 항력계수를 산정‧분석하여강풍(≥33 m s-1) 환경에서도 적합한 풍속 변환식으로 개선 필요성에 관해 논의하였다.

      • KCI등재

        서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산

        변도성,최병주,김효원 한국해양학회 2019 바다 Vol.24 No.4

        Tidal datums are key and basic information used in fields of navigation, coastal structures’ design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from –16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents. 조석현상이 뚜렷한 연안에서 항해, 연안 구조물 설계, 해양영토 획정, 침수범람 예보 등을 위하여 여러 조위 기준면들(tidal datums) 이 사용된다. 우리나라 수로학 분야와 해안공학 분야에서는 수심을 측량하는 기본 수준면(datum level)으로 약최저저조위(ALLW) 를 사용하고, 해안선과 안전수직높이(vertical clearances) 기준면으로는 약최고고조위(AHHW)를 사용하고 있다. 그러나 최근에 미국, 호주, 영국을 포함하여 국제적으로는 최저 천문조위(LAT)와 최고 천문조위(HAT)를 기본 수준면과 안전수직높이의 기준면으로 사용하고 있다. 이 연구에서는 서해안과 남해안 9개 조위 관측소에서 19년(1999-2017년) 동안 1시간 간격으로 관측한 해수면 높이 자료를 ‘19년 벡터평균 분석’, ‘19년 연속 분석’, ‘1년 연속 분석’ 방법으로 각각 1분 간격으로 19년간 예측한 조위로부터 LAT와HAT를 계산하였다. 이 연구에서는 19년 연속 관측자료의 조석 조화분해와 19년 연속 조석 예측에 모두 적합한 UTide 프로그램을사용하였다. 각 조위 관측소에서 ‘19년 벡터평균 분석’과 ‘19년 연속 분석’ 방법으로 각각 계산한 LAT 또는 HAT 값들의 차이는 대부분 ±1 cm 미만으로 큰 차이를 보이지 않았으며, 이 두 방법은 서로 거의 일치하는 결과를 생산하였다. 반면에 각 조위 관측소에서19년간 연속 관측한 자료를 연별로 19개로 나누어 각각 1년 자료씩 조석 조화분해한 후 각각 19년간 조위를 예측한 ‘1년 연속 분석’ 방법은 서로 크게 다른 19개의 LAT와 HAT 값들을 산출하였으며, 그 19개들의 표준편차는 3~7 cm이었다. ‘1년 연속 분석’ 방법으로 구한 이들 값들은 ‘19년 연속 분석’ 방법으로 산출 값과 비교하면 서해안과 남해안에서 LAT는 -16.4~10.7 cm의 차이를 보였으며, HAT는 –8.2~14.3 cm의 차이를 보였다. 계산된 LAT와 HAT를 ALLW와 AHHW와 정량적으로 비교했을 때, 서해안과 남해안에서 LAT는 ALLW보다 평균적으로 46.2 cm 더 낮았으며, HAT는 AHHW보다 평균적으로 33.6 cm 더 높았다. 이러한 차이에 가장크게 기여하는 분조는 ALLW와 AHHW 계산에 고려되지 않은 진폭이 비교적 큰 Sa와 N2 분조이었다. 또한 천해분조가 강하게 발달한 내만에서는 M4와 MS4 분조가 추가적으로 그 차이에 상당히 기여하였다. LAT와 ALLW 간 차이와 HAT와 AHHW 간 차이가 같지 않은 이유는 ALLW와 AHHW를 계산할 때는 주요 4대 분조의 진폭만을 사용하지만 LAT와 HAT를 계산할 때는 실질적으로 67 개 분조의 진폭뿐만 아니라 지각도 사용하기 때문이다.

      • KCI등재

        국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양·기상 자료 내려 받기 및 오류 알림 기능

        변도성,서광호,박세영,정광영,이주영,최원진,신재암,최병주,BYUN, DO-SEONG,SEO, GWANG-HO,PARK, SE-YOUNG,JEONG, KWANG-YEONG,LEE, JOO YOUNG,CHOI, WON-JIN,SHIN, JAE-AM,CHOI, BYOUNG-JU 한국해양학회 2017 바다 Vol.22 No.3

        This note provides technical guide on three issues associated with establishing and automatically running regional ocean forecasting systems: (1) a strategy for continuous production of hourly-interval three-day ocean forecast data, (2) the daily download of ocean and atmospheric forecasting data (i.e., HYCOM and NOAA/NCEP GFS data), which are provided by outside institutions and used as initial condition, surface forcing, and boundary data for regional ocean models, and (3) error notifications to numerical model managers through the Short Message Service (SMS). Guidance on dealing with these three issues is illustrated via solutions implemented by the Korea Hydrographic and Oceanographic Agency, since in embarking on this project we found that this procedural information was not readily available elsewhere. This technical guide is based on our experiences and lessons learned during the process of establishing and operating regional ocean forecasting systems for the East Sea and the Yellow and East China Seas over the 5 year period of 2012-2016. The fundamental approach and techniques outlined in this guide are of use to anyone wanting to establish an automatic regional and coastal ocean forecasting system. 이 노트는 국립해양조사원이 5년(2012~2016년)간에 걸쳐 지역해(동해, 황 동중국해) 수치예측시스템을 구축하여 자동으로 끊임없이 운영하면서 확보한 기술들 중 다음 3가지를 담고 있다. (1) 끊임없이 3일 해양예측 자료를 생산하기 위한 전략, (2) 매일 특정시각에 외부 해양 기상자료(HYCOM, NOAA/NCEP GFS)를 안정적으로 내려 받는 방법과 (3) 해양예측시스템 운영자들이 휴대전화 단문 메시지 서비스(Short Message Service)를 이용하여 해양예측시스템 수행 시 발생하는 시스템 오류를 신속하게 파악할 수 있는 기능에 관하여 기술하였다. 이들 기본 기술과 운영시스템 구성의 기본 개념은 지역해와 연안 해양 수치예측시스템을 자동으로 운영하는 체계를 구축하는 데 있어서 유용하게 사용될 것이다.

      • KCI등재

        한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화

        변도성,최병주,김효원 한국해양학회 2021 바다 Vol.26 No.1

        The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect. 비천문조인 연주조(Sa)와 반년주조(Ssa)는 해수특성 변화와 기상 상태에 영향을 받는 비대칭 월평균 해수면의 연변화와 관련이 깊다. 국립해양조사원이 운영하는 21개 조위관측소에서 관측한 1시간 간격의 19년(1999~2017년) 간 해수면 높이 자료에 대하여 두 종류의 조석 조화분해 프로그램(Task2K와 UTide)을 사용하여 Sa와 Ssa의 조화상수를 산출하였다. 조화분해에 사용되는 자료의 시작 시기와 길이에 따른 Sa의 안정도를 조사하였으며, Sa와 Ssa의 조화상수의 분포 특성을 살펴보았다. 먼저, 인천 조위관측소의 20년(1999~2018년) 해수면 관측자료를 1일씩 이동하면서 1년(369일) 조화분해를 수행하고 그 결과를 비교하였을 때, 두 프로그램 모두 자료의 시작 시기에 따라 Sa 조화상수가 불규칙하게 크게 변동한다는 사실을 알 수 있었다. Task2K가 Sa 분조 계산식에 근일점 천문변수를 고려하지 않아서, 두 프로그램 간에 약 78°의 지각 차가 났으며, 이들 진폭 차이는 1 cm 이하였다. 우리나라 연안에서는 Sa 조화상수가 해마다 크게 다르므로, 조위 예측 정확도와 관련하여 안정적인 조화상수 산출에 필요한 적절한 자료 길이를 결정하기 위해 관측자료 길이(1년, 2년, 3년, 5년, 9년, 19년)에 따른 인천 조위관측소의 Sa 조화상수 값의 변동성을 살펴보았다. 대표성 있는 Sa 조화상수를 구하기 위해서 조화분해를 수행할 때 5~9년 동안의 관측자료를 사용하면 조화상수 예측오차가 상당히 줄어들며, 19년 자료를 사용 것이 가장 바람직하다는 결론을 얻었다. Sa 분조의 진폭은 각 해역별로 다른 해양·대기 환경 특성에 의해 서해안에서 15.0~18.6 cm, 제주도를 포함한 남해안에서 10.7~17.5 cm이었으며, 울릉도를 포함한 동해안에서 10.5~13.0 cm이었다. 울릉도 등 동해 일부 해역을 제외하고 우리나라 연안에서 Ssa 분조의 영향으로 인해 연중 최고(최저) 해수면 높이가 발생하는 시기가 늦어(빨라)져서 해수면의 계절변화가 시간적으로 비대칭적인 특성을 보였다. 끝으로, 월평균 해수면, 대기압 보정 해수면, 비부피 높이 간 관계로부터 해수면의 해해변화와 계절변화의 비대칭성에 대기압 효과와 해수밀도가 가장 큰 영향을 끼친다는 사실을 확인하였다.

      • KCI등재

        조화분해법을 이용한 19세기 이전 고조석 및 고조류 추산 고찰

        변도성,Byun, Do-Seong 한국해양학회 2010 바다 Vol.15 No.4

        전통적 조화분해 방법을 이용한 명량해전(1597년 음력 9월 16일)과 같은 19세기 이전 역사적 해전 당시의 고조석(고조류) 추산과 관련하여 조석 (조류) 조화분해와 예측에 많이 사용되고 있는 IOS tidal package(IOS)와 Task-2000 tidal package(Task2K)의 5가지 천문변수 계산식을 살펴보았다. 이로부터 IOS와 달리 Task2K가 1801년 이전 시기에 대한 조석(조류) 추산이 불가능한 원인을 파악하였다. 즉, 임의의 19세기 이전 시점(1801년, 1800년, 1597년 1월 1일 자정)에 대하여 구한 천문변수 값을 비교한 결과, 1801년은 거의 일치하였으나, 나머지 해의 천문변수 값은 차이가 컸다. 이는 1900년을 기준으로 그레고리력(양력)을 직접 사용하여 천문변수 값을 구하는 Task2K의 계산식이 1801~2099년 범위를 벗어난 해에 대해서 윤년을 정확히 계산하지 못함으로써 발생하는 문제이다. 따라서 그레고리력을 바탕으로 0000년 1월 l일 자정을 기준으로 누적된 일자로 환산한 시간을 사용한 IOS의 천문변수 계산식을 사용함으로써 Task2K에서도 고조석(고조류)을 추산할 수 있다. We examined five astronomical variables formulas of the two conventional harmonic prediction programs (IOS tidal package (IOS) and Task-2000 tidal package (Task2K)) in relation to hindcast of paleo-tides and -tidal currents on historical navel battlefields such as Myeongryang Naval Battle (September 16th, 1597 according to the lunar calendar). Through the comparison of the resultant values in a certain time (00:00 January 1) of each year (1801, 1800 and 1597) calculated from the two different formulas, we understood that the reason why Task2K is incapable of hindcating them in pre-19th century, Specifically, we found that the Task2K formulas directly using the Gregorian calendar date did not identify leap years in calculating astronomical variables beyond the period of 1801-2099. Therefore, the IOS's formulas, which use the day number referenced on midnight 1/1/0000, are recommended for use in hindcasting paleo-tides and -tidal currents on historical navel battles in pre-19th century.

      • KCI등재

        Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

        변도성,조양기 한국해양과학기술원 2006 Ocean science journal Vol.41 No.4

        Determining photosynthetically active radiation (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM.Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of 0.44 (0.01) in January to an average of 0.48 (0.01) in July, with average daily variabilities over these periods of about 0.016 (0.008) and 0.025 (0.008), respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료