http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
한국 전통 간장의 숙성중 관능적 품질에 미치는 성분의 변화 -아미노산성질소, 아미노산 및 색도를 중심으로
김종규 한국환경보건학회 2004 한국환경보건학회지 Vol.30 No.1
This study was performed to investigate the changes of amino nitrogen, total amino acids, free amino acids, and color of Korean traditional soy sauce (kan-jang) during the ripening and storage for 12 months and the characteristics of the changes. All of the preparation methods for soy sauce followed the recommendations of the Korea Food Research Institute. The components of soy sauce were analyzed at 0,6, and 12 months. The contents of amino nitrogen of soy sauce were significantly higher than that of soybeans or meju (soybean cakes) at the initial stage of storage (p<0.05), and decreased during the storage. The content of total amino acids of soybean sauce was significantly lower than that of soybeans, and the content of free amino acids was higher than that of soybeans (p<0.05). The contents of total and free amino acids decreased in soy sauce after 12 months of storage (p<0.05). The composition of total and free amino acids and their ratios of soy sauce were changed during the storage. The ratios of free to total amino acids of soybeans, meju, and soy sauce were 0.8%, 17.3%, and 53.1-59.8%, respectively. Glutamic acid, which represents the savory taste, was detected the most abundantly in soy sauce during the storage. The ratios of free to total amino acids of glutamic acid were 42.9-59.5% in soy sauce. Lightness of Hunter color of soy sauce decreased over time (p<0.05). This study indicates that the ratios of free to total amino acids of soy sauce were much higher than those of soybeans, although its contents of total amino acids were much lower than those of soybeans. This study also indicates that this comes from the preparation and fermentation of meju. It was suspected that the organoleptic characteristics of soy sauce derived from the amino nitrogen, amino acids, and color might be inferior over 1 year of storage time. However, more detailed research should be conducted to interpretate this characteristics more accurately.
주 시각피질에서의 단순세포 수용영역 형성에 대한 성긴 집단부호 모델을 이용한 얼굴이식
김종규,장주석,김영일 대한전자공학회 1997 電子工學會論文誌, C Vol.c34 No.10
In this paper, we present a method that can recognize face images by use of a sparse population code that is a learning model about a receptive fields of the simple cells in the primary visual cortex. Twenty front-view facial images form twenty persons were used for the training process, and 200 varied facial images, 20 per person, were used for test. The correct recognition rate was 100% for only the front-view test facial images, which include the images either with spectacles or of various expressions, while it was 90% in average for the total input images that include rotated faces. We analyzed the effect of nonlinear functon that determine the sparseness, and compared recognition rate using the sparese population code with that using eigenvectors (eigenfaces), which is compact code that makes contrast with the sparse population code.
김종규 한국임상수의학회 1999 한국임상수의학회지 Vol.16 No.1
Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.
An Optimization Approach to the Wind-driven Ocean Circulation Model
김종규,류청로,장선덕,KIM Jong-Kyu,RYU Cheong-Ro,CHANG Sun-duck The Korean Society of Fisheries and Aquatic Scienc 1994 한국수산과학회지 Vol.27 No.6
It has been demonstrated for the finite-difference ocean circulation model that the problem of uncertain forcing and input data can be tackled with an optimization techniques. The uncertainty problem in interesting flow properties is exploring a finite difference ocean circulation model due to the uncertainty in the driving boundary conditions. The mathematical procedure is based upon optimization method by the conjugate gradient method using the simulated data and a simple barotropic model. An example for the ocean circulation model is discussed in which wind forcing and the steady-state circulation are determined from a simulated stream function.