http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
고객 Clustering을 위한 Blog 감성 추출에 대한 연구
배상근 ( Sangkeun Bae ),강재우 ( Jaewoo Kang ) 한국정보처리학회 2008 한국정보처리학회 학술대회논문집 Vol.15 No.1
Blog 는 개인의 여러 미묘한 감정과 감성들을 표현하고, 이를 소통하는 Communication Channel 역할을 하고 있으며, 또한 누구나 접근할 수 있게 되었다. 이는 각 기업에게, 기존의 비효율적인 Mass Marketing 방법에서 벗어나, 소비자의 감성을 자연스럽게 추출하여 세련된 Target Marketing 을 할 수 있는 훌륭한 기회를 제공하게 된다. 하지만, 고객의 Blog 로부터 미묘한 감성지수를 추출하고, 이를 마케팅 방법에 접목시키는 것은 쉽지 않은 일이다. 이러한 문제를 해결하기 위해서 본 논문에서는 고객 회원 정보에 등록된 Blog 를 이용하여, Target Marketing에활용할수있는, 고객 Clustering을 위한 Blog 감성 추출에 대한 연구를 수행하였다. Blog 의 Main Skin Image를 통해 지배적인 채도와 명도를 추출하여 수치화하고, 이를 바탕으로 고객 Blog 를 테이스트 스케일법(*일본감성연구소 개발방법)의 실증된 감성 Group 별로 Clustering 하였다. Clustering된각 Blog 사용자를 대상으로 연관 배색에 대한 감성 설문조사를 실시한 결과, 유의한 실험결과가 도출되어 향후 고객 감성을 기반으로 한 Target Marketing 에 활용할 수 있는 가능성을 볼 수 있었다.
서성보(Sungbo Seo),강재우(Jaewoo Kang),남광우(Kwang Woo Nam),류근호(Keun Ho Ryu) 한국정보과학회 2006 정보과학회논문지 : 데이타베이스 Vol.33 No.2
분산 센서 네트워크에서 대용량 스트림 데이타를 제한된 네트워크, 전력, 프로세서를 이용하여 모든 센서 데이타를 전송하고 분석하는 것은 어렵고 바람직하지 않다. 그러므로 연속적으로 입력되는 데이타를 사전에 분류하여 특성에 따라 선택적으로 데이타를 처리하는 데이타 분류 기법이 요구된다. 이 논문에서는 다차원 센서에서 주기적으로 수집되는 스트림 데이타를 슬라이딩 윈도우 단위로 데이타를 분류하는 기법을 제안한다. 제안된 기법은 전처리 단계와 분류단계로 구성된다. 전처리 단계는 다변량 스트림 데이타를 포함한 각 슬라이딩 윈도우 입력에 대해 데이타의 변화 특성에 따라 문자 기호를 이용하여 다양한 이산적 문자열 데이타 집합으로 변환한다. 분류단계는 각 윈도우마다 생성된 이산적 문자열 데이타를 분류하기 위해 표준 문서 분류 알고리즘을 이용하였다. 실험을 위해 우리는 Supervised 학습(베이지안 분류기, SVM)과 Unsupervised 학습(Jaccard, TFIDF, Jaro, Jaro Winkler) 알고리즘을 비교하고 평가하였다. 실험결과 SVM과 TFIDF 기법이 우수한 결과를 보였으며, 특히 속성간의 상관 정도와 인접한 각 문자 기호를 연결한 n-gram방식을 함께 고려하였을 때 높은 정확도를 보였다. In distributed wireless sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. We propose a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes input as a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a standard text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Bayesian classifier and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro and JaroWinkler. In our experiments, SVM and TFIDF outperformed other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.