RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        더보기
        • 무료
        • 기관 내 무료
        • 유료
        • KCI등재

          딥러닝을 위한 경사하강법 비교

          강민제 한국산학기술학회 2020 한국산학기술학회논문지 Vol.21 No.2

          This paper analyzes the gradient descent method, which is the one most used for learning neural networks. Learning means updating a parameter so the loss function is at its minimum. The loss function quantifies the difference between actual and predicted values. The gradient descent method uses the slope of the loss function to update the parameter to minimize error, and is currently used in libraries that provide the best deep learning algorithms. However, these algorithms are provided in the form of a black box, making it difficult to identify the advantages and disadvantages of various gradient descent methods. This paper analyzes the characteristics of the stochastic gradient descent method, the momentum method, the AdaGrad method, and the Adadelta method, which are currently used gradient descent methods. The experimental data used a modified National Institute of Standards and Technology (MNIST) data set that is widely used to verify neural networks. The hidden layer consists of two layers: the first with 500 neurons, and the second with 300. The activation function of the output layer is the softmax function, and the rectified linear unit function is used for the remaining input and hidden layers. The loss function uses cross-entropy error. 본 논문에서는 신경망을 학습하는 데 가장 많이 사용되고 있는 경사하강법에 대해 분석하였다. 학습이란 손실함수가 최소값이 되도록 매개변수를 갱신하는 것이다. 손실함수는 실제값과 예측값의 차이를 수치화 해주는 함수이다. 경사하강법은 오차가 최소화되도록 매개변수를 갱신하는데 손실함수의 기울기를 사용하는 것으로 현재 최고의 딥러닝 학습알고리즘을 제공하는 라이브러리에서 사용되고 있다. 그러나 이 알고리즘들은 블랙박스형태로 제공되고 있어서 다양한 경사하강법들의 장단점을 파악하는 것이 쉽지 않다. 경사하강법에서 현재 대표적으로 사용되고 있는 확률적 경사하강법(Stochastic Gradient Descent method), 모멘텀법(Momentum method), AdaGrad법 그리고 Adadelta법의 특성에 대하여 분석하였다. 실험 데이터는 신경망을 검증하는 데 널리 사용되는 MNIST 데이터 셋을 사용하였다. 은닉층은 2개의 층으로 첫 번째 층은 500개 그리고 두 번째 층은 300개의 뉴런으로 구성하였다. 출력 층의 활성화함수는 소프트맥스함수이고 나머지 입력 층과 은닉 층의 활성화함수는 ReLu함수를 사용하였다. 그리고 손실함수는 교차 엔트로피 오차를 사용하였다.

        • KCI등재

          Determination of multilayer earth model using genetic algorithm

          강민제,부창진,김호찬 한국지능시스템학회 2007 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGE Vol.7 No.3

          In this paper a methodology has been proposed to compute the parameters of the multilayer earth model using a genetic algorithm(GA). The results provided by the GA constitute the indispensable data that can be used in circuital or field simulations of grounding systems. This methodology allows to proceed toward a very efficient simulation of the grounding system and an accurate calculation of potential on the ground's surface. The sets of soil resistivity used for GA are measured in Jeju area.

        • KCI등재후보

          연산회로 신경망

          강민제 한국융합신호처리학회 2002 信號處理·시스템學會 論文誌 Vol.3 No.1

          A neural network structure which is able to perform the operations of analog addition and linear equation is proposed. The network employs Hopfkeld's model of a neuron with the connection elements specified on the basis of an analysis of the energy function. The analog addition network and linear equation network are designed by using Hopfield's A/D converter and linear programming respectively. Simulation using Pspice has shown convergence predominently to the correct global minima. 아날로그 합산과 선형방정식을 풀 수 있는 신경망구조가 제안되었다. 계산에너지함수에 근거하여 가중치를 구하는 Hopfield 신경망모델을 사용하였다. 아날로그 합산과 선형방정식은 각각 Hopfiled의 A/D컨버터와 선형프로그래밍회로망을 이용하여 설계되었다. 시뮬레이션은 Pspice 프로그램을 이용하였으며, 그 결과들은 대부분 전체극소점으로 수렴함을 보였다.

        • KCI등재

          Comparison of Weight Initialization Techniques for Deep Neural Networks

          강민제,김호찬 국제문화기술진흥원 2019 International Journal of Advanced Culture Technolo Vol.7 No.4

          Neural networks have been reborn as a Deep Learning thanks to big data, improved processor, and some modification of training methods. Neural networks used to initialize weights in a stupid way, and to choose wrong type activation functions of non-linearity. Weight initialization contributes as a significant factor on the final quality of a network as well as its convergence rate. This paper discusses different approaches to weight initialization. MNIST dataset is used for experiments for comparing their results to find out the best technique that can be employed to achieve higher accuracy in relatively lower duration.

        • 유전알고리즘을 사용한 대지의 다층구조 분석

          강민제,부창진,김호찬,고영수 제주대학교 공과대학 첨단기술연구소 2005 尖端技術硏究所論文集 Vol.16 No.2

          In this paper, a methodology has been proposed according to which, after carrying out a set of soil's resistivity measurements, one can compute the parameters of the multilayer earth structure using a genetic algorithm(GA). The results provided by the GA constitute the indispensable data that can be used in circuital or field simulations of grounding systems. The methodology allows to proceed toward a very efficient simulation of the grounding system and an accurate calculation of potential on the ground's surface.

        • KCI등재후보

          신경회로망을 이용한 비선형 프로그래밍회로

          강민제 한국융합신호처리학회 2001 信號處理·시스템學會 論文誌 Vol.2 No.4

          신경망을 이용한 선형프로그랭 회로를 홉프필드가 제안한 이후로 이에 관한 많은 논문들이 발표되었으며, 그 중에는 비선형 프로그래밍 문제에 관한 것들도 많다. 그래서 비용함수가 비선형인 경우는 해결이 되었으나 제한조건이 비선형인 경우에는 해결되지 못한 상태이다. 이 논문에서는 제한조건이 비선형인 경우를 포함하는 즉 비용함수와 제한조건 모두 비선형인 경우를 풀 수 있는 일반적인 비선형프로그래밍 신경망을 제안하고자 한다. Since Hopfield introduced the neural network for liner programming problems many papers have been published about it and some of them are about nonlinear programming problems Therefore nonlinear, cost function problem has been solved however nonlinear constraints problem has not been solved In this paper I have proposed the general nonlinear programming neural networks which minimize cost function with nonlinear constraints.

        • KCI등재

          신경회로망의 최적화 개념을 이용한 연산회로

          강민제,고성택 한국정보통신학회 1998 한국정보통신학회논문지 Vol.2 No.1

          아날로그와 디지틀 합산 가능한 신경회로망회로를 제안한다. 제안된 회로는 Hopfield 신경회로망 모델을 사용하였으며, 연결강도들은 에너지함수를 이용해서 구하였다. NMOS를 이용하여 뉴론을 만들었고, 시뮬레이션결과는 거의 대부분의 경우가 전체 최소점으로 수렴함을 보였다. A neural network structure able to perform the operations of analogue and binary addition is proposed. The network employs Hopfield' model of a neuron with the connection elements specified on the basis of an analysis of the energy function. Simulation using NMOS neurons has shown convergence predominantly to the correct global minima.

        맨 위로 스크롤 이동