http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Fabrication of Stretchable Transparent Electrodes
오종식,염근영 한국진공학회 2017 Applied Science and Convergence Technology Vol.26 No.6
Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.
비스포스포네이트가 인간 치수 줄기세포의 조골세포로의 분화와 광물화에 미치는 영향
오종식,유미현,김형준,신상훈,이재열 대한구강악안면병리학회 2017 대한구강악안면병리학회지 Vol.41 No.5
In this study, we investigated the effect of bisphosphonate on the osteoblastic differentiation of human dental stem cells (hDPSCs). In the first experiment, we evaluated the effect of bisphosphonate on the differentiation of hDPSCs into osteoblasts by alkaline phosphatase staining after culturing hDPSCs. As a result, on day 13, the osteogenic differentiation of hDPSC was suppressed at 5 μM in clodronate and 2 μM in zolendronate. In NBP, osteogenic differentiation is more suppressed. In second experiment, cytotoxicity and proliferation test, the cell proliferation (examined by MTT assay) was more suppressed as the concentrations of zolendronate were larger than those of alendronate and clodronate. Western blotting, a third experiment, was found that AKT phosphorylation was inhibited in cell signaling proteins involved in cell proliferation inhibition and death by bisphosphonate concentration. In human dental stem cells, bisphosphonates inhibit osteoblast differentiation, and this phenomenon is clearly observed in NBPs (zolendronate), and it has been found that it is related to AKT phosphorylation of cell signaling proteins.