RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gentiopicroside Ameliorates the Progression from Hepatic Steatosis to Fibrosis Induced by Chronic Alcohol Intake

        ( Hong-xu Yang ),( Yue Shang ),( Quan Jin ),( Yan-ling Wu ),( Jian Liu ),( Chun-ying Qiao ),( Zi-ying Zhan ),( Huan Ye ),( Ji-xing Nan ),( Li-hua Lian ) 한국응용약물학회 2020 Biomolecules & Therapeutics(구 응용약물학회지) Vol.28 No.4

        In current study, we aimed to investigate whether the gentiopicroside (GPS) derived from Gentiana manshurica Kitagawa could block the progression of alcoholic hepatic steatosis to fibrosis induced by chronic ethanol intake. C57BL/6 mice were fed an ethanol- containing Lieber-DeCarli diet for 4 weeks. LX-2 human hepatic stellate cells were treated with GPS 1 h prior to transforming growth factor-β (TGF-β) stimulation, and murine hepatocyte AML12 cells were pretreated by GPS 1 h prior to ethanol treatment. GPS inhibited the expression of type I collagen (collagen I), α-smooth muscle actin (α-SMA) and tissue inhibitor of metal protease 1 in ethanol-fed mouse livers with mild fibrosis. In addition, the imbalanced lipid metabolism induced by chronic ethanol-feeding was ameliorated by GPS pretreatment, characterized by the modulation of lipid accumulation. Consistently, GPS inhibited the expression of collagen I and α-SMA in LX-2 cells stimulated by TGF-β. Inhibition of lipid synthesis and promotion of oxidation by GPS were also confirmed in ethanol-treated AML12 cells. GPS could prevent hepatic steatosis advancing to the inception of a mild fibrosis caused by chronic alcohol exposure, suggesting GPS might be a promising therapy for targeting the early stage of alcoholic liver disease.

      • KCI등재

        Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

        Chun-Ying Liu,Rui-Xin Zhou,Chang-Kai Sun,Ying-Hua Jin,Hong-Shan Yu,Tian-Yang Zhang,Long-Quan Xu,Feng-Xie Jin 고려인삼학회 2015 Journal of Ginseng Research Vol.39 No.3

        Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20- O-b-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-b-D-Glc with the pathway Rb1/Rd/F2/C-K. However, the enzyme firstly hydrolyzed C-3 position 3-O-b-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway Rb2/C-O/C-Y/C-K, and Rc/C-Mc1/C-Mc/C-K. According to enzyme kinetics, Km and Vmax of MichaeliseMenten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at 45C and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for CMc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPDginsenosides using crude enzyme.

      • SCIESCOPUSKCI등재

        Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

        Xin, Chun,Quan, Hui,Kim, Joung-Min,Hur, Young-Hoe,Shin, Jae-Yun,Bae, Hong-Beom,Choi, Jeong-Il The Korean Society of Ginseng 2019 Journal of Ginseng Research Vol.43 No.3

        Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

      • SCIESCOPUSKCI등재

        Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

        Liu, Chun-Ying,Zhou, Rui-Xin,Sun, Chang-Kai,Jin, Ying-Hua,Yu, Hong-Shan,Zhang, Tian-Yang,Xu, Long-Quan,Jin, Feng-Xie The Korean Society of Ginseng 2015 Journal of Ginseng Research Vol.39 No.3

        Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.

      • KCI등재

        DEPDC1 is a novel cell cycle related gene that regulates mitotic progression

        ( Yan Mi ),( Chun Dong Zhang ),( You Quan Bu ),( Ying Zhang ),( Long Xia He ),( Hong Xia Li ),( Hui Fang Zhu ),( Yi Li ),( Yun Long Lei ),( Jiang Zhu ) 생화학분자생물학회(구 한국생화학분자생물학회) 2015 BMB Reports Vol.48 No.7

        DEPDC1 is a recently identified novel tumor-related gene that is upregulated in several types of cancer and contributes to tumorigenesis. In this study, we have investigated the expression pattern and functional implications of DEPDC1 during cell cycle progression. Expression studies using synchronized cells demonstrated that DEPDC1 is highly expressed in the mitotic phase of the cell cycle. Immunofluorescence assays showed that DEPDC1 is predominantly localized in the nucleus during interphase and is redistributed into the whole cell upon nuclear membrane breakdown in metaphase. Subsequently, siRNA-mediated knockdown of DEPDC1 caused a significant mitotic arrest. Moreover, knockdown of DEPDC1 resulted in remarkable mitotic defects such as abnormal multiple nuclei and multipolar spindle structures accompanied by the upregulation of the A20 gene as well as several cell cycle-related genes such as CCNB1 and CCNB2. Taken together, our current observations strongly suggest that this novel cancerous gene, DEPDC1, plays a pivotal role in the regulation of proper mitotic progression. [BMB Reports 2015; 48(7): 413-418]

      • KCI등재

        Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I

        Yongkun Xiao,Chun-Ying Liu,임완택,Shuang Chen,Kangze Zuo,Hong Shan Yu,Jian-Guo Song,Long-Quan Xu,Tea-Hoo Yi,Feng Xie Jin 고려인삼학회 2019 Journal of Ginseng Research Vol.43 No.2

        Background: Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. Methods: NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. Results: All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3/C-Mx1/C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc/C-Mc1/CMc/ C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-Oe or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. Conclusion: Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.

      • SCIESCOPUSKCI등재

        The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits

        Yu, Jing,Zhou, Quan-Yong,Zhu, Meng-Jin,Li, Chang-Chun,Liu, Bang,Fan, Bin,Zhao, Shu-Hong Asian Australasian Association of Animal Productio 2007 Animal Bioscience Vol.20 No.5

        FoxO1, FoxO3a and FoxO4 belong to the FoxO gene family, which play important roles in the PI3K/PKB pathway. In this study, we cloned the porcine FoxO1, FoxO3a and FoxO4 sequences and assigned them to SSC11p11-15, SSC1p13 and SSC xq13 using somatic cell hybrid panel (SCHP) and radiation hybrid panel (IMpRH). RT-PCR results showed that these three genes are expressed in multiple tissues. Sequencing of PCR products from different breeds identified a synonymous T/C polymorphism in exon 2 of FoxO3a. This FoxO3a single nucleotide polymorphism (SNP) can be detected by AvaII restriction enzyme. The allele frequencies of this SNP were investigated in Dahuabai, Meishan, Tongcheng, Yushan, Large White, and Duroc pigs. Association of the genotypes with growth and carcass traits showed that different genotypes of FoxO3a were associated with carcass length and backfat thickness between 6th and 7th ribs (BTR) and drip loss (p<0.05).

      • KCI등재

        Antioxidant Flavone Glycosides from the Root of Pteroxygonum giraldii

        Bao-Lin Li,Lin-Ling Jiang,Hui-Chun Wang,Zhan-Jun Yang,Xi-Quan Zhang,Hong-Mei Gu,Xian-Hua Tian 대한화학회 2009 Bulletin of the Korean Chemical Society Vol.30 No.7

        Two new flavone glycosides, giraldiin A and B, together with three known compounds, annulatin, myricetin 3-O-α-L-rhamnopyranoside and gallic acid, were isolated from the ethanol extract of the root of Pteroxygonum giraldii Damm. et Diels. The structures of giraldiin A and B are designated as 3'-(α-L-arabinopyranosyloxy)-4',5,5',7-tetrahydroxy-3-methoxyflavone and 4'-(β-D-glucopyranosyloxy)-5,5',7-trihydroxy-2',3-dimethoxyflavone, respectively,on the basis of detailed spectroscopic analyses. The free radical scavenging activity of giraldiin A was evaluated by decolouring spectrophotometry of pentamethine cyanine dye (Cy5) with Fe2+-H2O2 Fenton radical generating system. The results indicated the hydroxyl free radical scavenging activity of giraldiin A (ED50 = 23.7 nmol/mL) is higher than that of some known antioxidants such as rutin, puerarin, daidzein and 2,6-di-tertbutyl-4-methylphenol.

      • KCI등재

        Studies on the Soybean Cyst Nematode (Heterodera glycines) in China

        Liu, Wei-Zhi,Liu, Ye,Duan, Yu-Xi,Hong, Quan-Chun,Wang, Ke-Ning Korean Society of Applied Entomology 1995 한국응용곤충학회지 Vol.34 No.2

        Soybean has been cultivated in China for 5,000 years. The soybean cyst neamtode (SCN), Heterodra glycines, was recongnized in Northeastern China in 1899. Currently, it is known to occur in 12 provinces. The biology of SCN was investigated in several provinces. Six races of SCN were identified (race 1, 2, 3, 4, 5 and 7). About f10,000 soybean germplasm lines were evaluated for their resistance to race 1, 3, 4 and 5 of SCN. At least two black-seeded cultivars are resistant to all four races. Several tolerant soybean cultivars with yellow seed coat were released and are in production. Additional resistant cultivars are being developed. Nematicides were not applied in production Potential biocontrol agents and related aspects are being investigated.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼