RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 환경성평가를 통한 비위생 매립지 정비방안

        이해승(Hae-Seung Lee) 대한환경위생공학회 2008 대한환경위생공학회지 Vol.23 No.3

        In this study, we intend to present the uncontrolled landfill maintenance plans by diversely reviewing the operating conditions of landfill and environmental effects and economical issues resulted from the operation of landfill for the purpose of suggesting the optimal maintenance plans applicable to the uncontrolled landfill and unused landfill located in Korea. We perform the basic and precise surveys against three landfill sites showing the biggest problem out of 8 unsanitary landfills sites located in Y County. We compare and review the treatment plans prepared and operated by the N Landfill. The compared and reviewed results show that the local stabilization plan is more effective than the excavation and transfer treatment plan when considering the economic efficiency only. However, the excavation and transfer treatment plan is valid when considering the diverse elements. The G Landfill is operated with separated into living waste landfill section and construction waste landfill section. However, some landfill gas collection bores or holes are installed in its living waste landfill section, which has not been used for about 20 years, as a part of follow-up control. The element causing the environmental damage is considerably reduced in its living waste landfill section. However, the effort to keep the follow-up control through the local stabilization work is required. The landfill is under processing in the construction waste landfill section. However, most of buried wastes are the inorganic wastes such as waste materials and concrete, so the maintenance plan focused on the use of top land by installing the local stabilization facilities is considered as an effective plan. The landfill is under processing in the K Landfill. It seems to be difficult to maintain this landfill through the local stabilization. The excavation and transfer treatment plan to completely remove the potential environmental pollution source. is considered as the valid plan.

      • KCI등재

        Statistical evaluation of groundwater quality around an uncontrolled landfill: implication for plume migration pathways

        Joung-Ku Park,Jin-Yong Lee,김태동 한국지질과학협의회 2008 Geosciences Journal Vol.12 No.3

        When leachate emanates from an uncontrolled landfill, it poses a threat to the groundwater resources of the surrounding areas. Thus, regular monitoring is essential to protect the groundwater from contamination. In this study, an evaluation is carried out on the quality of groundwater affected by the leachate deriving from an uncontrolled landfill situated in a valley. A nonparametric trend analysis revealed that alkalinity levels were increasing at most monitoring wells, indicating the continuous increase of biodegradation of organic matter. According to a cluster analysis, similar chemical groups developed in a parallel direction to that of groundwater flow. Each group indicates different redox levels and various degrees of landfill leachate effect. This geographical distribution of groups with similar chemical properties is closely associated with local groundwater flow and land surface permeability. However, an evaluation of the effect of recharge flow from the surrounding mountains and of the vertical component of groundwater in the recharge area is essentially required in order to enhance our understanding of redox zonation or distribution of groundwater quality affected by the landfill leachate.

      • KCI등재

        정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가

        한지선(Ji Sun Han),성은혜(Sung Eun Hae),박헌주(Hun Ju Park),김창균(Chang Gyun Kim) 大韓環境工學會 2007 대한환경공학회지 Vol.29 No.8

        매립지를 직접 생태학적으로 모니터링하는 방법을 개발하고자, 매립지 내의 생화학적 반응에 관여하는 세균들과 효소의 양을 정량함과 동시에 지하수 수질인자와 상호 연관성을 조사하여 생태학적 인자와의 연계 이용 가능성을 평가하였다. 이를 위하여 4개의 매립 종료된 비위생 매립지(천안(C), 원주(W), 논산(N), 평택(P) 매립지)에서 계절별로 지하수 시료를 채취하였으며 동시에 16S rDNA 방법을 사용하여 미생물 다양성을 분석하였다. 이를 기반으로, 매립지에서 주로 발견되는 세균과 효소를 대표하는 유전자를 정량하기 위한 특이 프라이머 쌍을 제작하였으며 상관계수에 기초하여 수질인자와 유전자 지표 인자간의 정량적 관련성을 비교하였다. 그 결과 DSR(황환원 세균) gene과 BOD(생화학적 산소요구량)사이의 상관관계는 0.8 이상인데 반해 NSR(질산화 세균-Nitrospira sp.) gene과 질산성 질소는 0.9 이상이었다. 안정화지표(BOD/COD)와 MTOT(메탄 산화 세균), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) gene들은 0.8 이상의 상관관계를 가졌으나 3가 철과 Fli(Ferribacterium limineticm) gene은 0.7로 낮았다. MTOT gene의 경우, BOD/COD과의 관련성이 100%에 가깝게 높았다. 또한, 혐기성 유전자들(nirS-아질산 환훤효소, MCR, Dde, DSR)과 DO 역시 0.8 이상으로 나타나 일반적인 매립지 혐기성 반응들이 DO에 크게 의존함을 보였다. 결론적으로 분자생물학적 조사와 수질인자가 높은 상호연관성이 있었으며 real-time PCR이 전통적인 모니터링 인자들과 동시에 상호 보완적으로 모니터링에 사용됨으로써 매립지안정화 및 주변 영향을 평가하는데 효율적으로 사용 될 수 있음을 알 수 있었다. As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR, Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼