RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tropical Cyclone Potential Hazard in Southeast China and Its Linkage With the East Asian Westerly Jet

        Jin-hua Yu,Hua-xing Xue,송지에 한국기상학회 2017 Asia-Pacific Journal of Atmospheric Sciences Vol.53 No.2

        A new synthesized index for estimating the hazard of both accumulated strong winds and heavy rainfall from a tropical cyclone (TC) is presented and applied to represent TC potential hazard over Southeast China. Its relationship with the East Asian westerly jet in the upper troposphere is also investigated. The results show that the new TC potential hazard index (PHI) is good at reflecting individual TC hazard and has significantly higher correlation with economic losses. Seasonal variation of TC-PHI shows that the largest TC-PHI on average occurs in July-August, the months when most TCs make landfall over mainland China. The spatial distribution of PHI at site shows that high PHI associated with major landfall TCs occurs along the southeast coast of China. An East Asian westerly jet index (EAWJI), which represents the meridional migration of the westerly jet, is defined based on two regions where significant correlations exist between TC landfall frequency and zonal wind at 200 hPa. Further analyses show that an anomalous easterly steering flow occurred above the tracks of TCs, and favored TCs making landfall along the southeast coast of China, leading to an increase in the landfall TC when the EAWJ was located north of its average latitude. Meanwhile, anomalous easterly wind shear and positive anomaly in low-level relative vorticity along TCs landfall-track favored TC development. In addition, anomalous water vapor transport from westerly wind in the South China Sea resulted in more condensational heating and an enhanced monsoon trough, leading to the maintenance of TC intensity for a longer time. All of these environmental factors increase the TC potential hazard in Southeast China. Furthermore, the EAWJ may affect tropical circulation by exciting meridional propagation of transient eddies. During a low EAWJI phase in July-August, anomalous transient eddy vorticity flux at 200 hPa propagates southward over the exit region of the EAWJ, resulting in eddy vorticity flux convergence and the weakening in the zonal westerly flow to the south of the EAWJ exit region, producing a favorable upper-level circulation for a TC making landfall.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼