RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구

        이우춘 ( Woo Chun Lee ),최선희 ( Sun Hee Choi ),조현구 ( Hyen Goo Cho ),김순오 ( Soon Oh Kim ) 한국광물학회 2011 광물과 암석 (J.Miner.Soc.Korea) Vol.24 No.2

        본 연구에서는 자연에서 산출빈도가 높은 3가 비소(아비산염)와 two-line ferrihydrite와의 표면흡착 반응의 기작을 살펴보기 위하여 3가 비소를 흡착시킨 two-line ferrihydrite에 대한 X선 흡수분광 분석을 수행하였다. 연구에 사용된 two-line ferrihydrite는 실험실에서 합성하여 사용하였으며, 산성과 염기성 환경에서의 표면반응 기작을 비교하기 위하여 pH 4와 10에서 연구를 수행하였다. 또한 각 pH 조건별 3가 비소의 흡착농도에 따른 표면반응의 차이를 비교 평가하였다. X선 흡수분광 분석결과에서 얻은 EXAFS영역에서의 비소 3가에 대한 구조 변수들을 살펴보면 As-O 배위수는 3.1~3.3개, 거리는 1.74~1.79 Å으로 two-line ferrihydrite 표면에 흡착된 As(III) complex의 구조 단위체가 AsO3임이 확인되었다. As(Ⅲ)-Fe쌍은 주로 안정된 형태의 bidentate binuclear corner-sharing (2C)의 결합구조를 갖는 것으로 나타났으며, bidentate mononuclear edge-sharin g(2E)와 2C가 혼합된 결합구조도 공존하는 것으로 조사되었다. pH 4에서는 흡착 농도에 따라 다른 표면구조를 가지는 반면, pH 10에서는 흡착 농도에 상관없이 동일한 표면구조를 보이는 것으로 나타났다. 이러한 결과는 3가 비소와 two-line ferrihydrite의 표면반응은 pH와 농도에 의해서 영향을 받는다는 거시적인(macroscopic) 흡착실험 연구결과가 미시적인(microscopic) X선 흡수분광 결과에 의해서 해석될 수 있음을 의미한다. X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 Å, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is AsO3. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear corner-sharing (2C) and the mixture of bidentate mononuclear edge sharing (2E) and 2C appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.

      • KCI등재

        자철석의 비소에 대한 흡착특성 연구

        정현수 ( Hyeon Su Jeong ),이우춘 ( Woo Chun Lee ),조현구 ( Hyen Goo Cho ),김순오 ( Soon Oh Kim ) 한국광물학회 2008 광물과 암석 (J.Miner.Soc.Korea) Vol.21 No.4

        토양과 지하수의 비소 오염은 최근 심각한 환경문제들 중 하나로 대두되고 있으며, 이러한 비소 오염은 다양한 자연적 또는 인위적 원인들로 인하여 발생할 수 있다. 지중에서 비소의 거동은 철, 망간, 알루미늄 등과 같은 여러 종류의 산화물 또는 수산화물들과 점토광물에 의하여 영향을 받고, 특히 이중에서 철 (산)수산화물이 가장 효과적으로 비소를 제어하는 것으로 알려져 있다. 이에 본 연구에서는 철산화물의 일종인 자철석의 비소 흡착 특성을 연구하였다. 자철석이 비소의 화학종(5가와 3가 비소)에 따라서 어떠한 흡착 특성을 나타내는가 알아보기 위하여 비소 흡착에 주요하게 영향을 줄 수 있는 자철석의 물리화학적 특성들을 측정하고, 평형론적 실험과 반응속도론적 실험을 병행하여 수행하였다. 비소 흡착제로 사용하기 위하여 실험실에서 합성한 자철석의 영전하점(point of zero charge, PZC)과 비표면적은 각각 6.56과 16.6g/m2로 다른 철 (산)수산화물들에 비해 상대적으로 낮은 값들을 나타냈다. 두 비소 화학종과 자철석의 평형실험 결과, 3가 비소가 5가 비소보다 더 많이 흡착되는 것으로 조사되어, 3가 비소가 흡착제로 사용된 자철석과 더 높은 친화력을 가지는 것으로 나타났다. 3가 비소는 pH7에서, 5가 비소는 pH2에서 흡착량이 가장 높았으며, 5가 비소의 경우 pH가 증가함에 따라 자철석의 표면과 전기적 반발력으로 인해 그 흡착량이 감소하는 것으로 나타났다. 이는 pH에 따른 자철석의 표면전하의 변화와 비소의 화학적 형태 등이 비소를 제어하는데 있어서 중요한 인자로 고려되어야 한다는 것을 지시한다. 시간에 따른 흡착 반응연구에서는 5가 비소가 3가 비소보다 더 빠르게 흡착됨을 알 수 있었으나, 비소의 화학적 존재형태에 관계없이 모두 4시간 이내에 평형흡착에 도달하였다. 또한, 반응속도 실험결과를 지금까지 제안된 다양한 반응속도 모델들과 비교하였을 때, power function과 elovich 모델이 본 연구에서 사용된 자철석과 비소의 흡착을 가장 잘 모사하는 것으로 나타났다. Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and 16.6g/m2, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

      • KCI등재

        침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화

        전지훈(Ji-Hun Jeon),김성희(Seong-Hee Kim),이상우(Sang-Woo Lee),김순오(Soon-Oh Kim) 大韓環境工學會 2017 대한환경공학회지 Vol.39 No.1

        비소는 다양한 유해물질들 중 독성이 가장 크다고 알려져 있으며, 자연발생 또는 인간의 활동으로부터 비소오염이 야기될 수 있다. 지하수 내 비소는 환원 환경에서 아비산염, 산화 환경에서 비산염 형태로 존재한다. 아비산염은 비산염보다 독성이 강하고 이동성이 더 크기 때문에 아비산염을 비산염으로 산화시켜 독성을 저감시키기 위한 연구가 많은 관심을 받고 있다. 본 연구에서는 비소로 오염된 지하수로부터 독성이 높은 아비산염을 독성이 낮은 비산염으로 산화시키기 위하여 자외선램프 및 자외선 LED 광원과 침철석 촉매를 이용한 광촉매 산화 공정에 대하여 연구하였다. 광산화 실험에서 광촉매로 사용된 침철석의 투여량이 0.05 g/L일 때 가장 높은 광산화 효율을 나타났다. 또한 광원의 파장별 겉보기 광산화 효율을 비교한 결과, 자외선램프가 자외선 LED에 비하여 아비산염의 산화 효율이 더 높은 것으로 나타났다. 하지만, 자외선 방사량을 기준으로 보정하면, 자외선 LED가 자외선램프보다 광산화 효율이 더 높은 것으로 평가되었다. 본 연구를 통해 침철석 광물이 존재하는 지하수 환경에서 외부로부터 다른 광촉매를 투여하지 않고 친환경적인 광산화 공정을 이용하여 비소의 독성 저감이 가능하다는 것을 알 수 있었다. 또한, 공정 또한 자외선 LED가 자외선램프의 단점을 보완할 수 있는 대체 광원으로 광산화 공정에 활용 가능하다는 것을 확인하였다. Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photooxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.

      • KCI등재

        적철석(Hematite) 표면의 비소 흡착 특성

        김성희 ( Seong Hee Kim ),이우춘 ( Woo Chun Lee ),조현구 ( Hyen Goo Cho ),김순오 ( Soon Oh Kim ) 한국광물학회 2012 광물과 암석 (J.Miner.Soc.Korea) Vol.25 No.4

        철 (산수)산화물들 중 지표환경에서 가장 안정된 형태로 알려진 적철석의 비소에 대한 흡착제로서의 다양한 특성을 조사하고 비소와의 흡착특성을 규명하였다. 본 연구에서 합성된 적철석은 31.8 g m2/g 의 비표면적을 가졌으며, 전위차 적정법(potentiometric titration)에 의해 측정된 영전하점(point of zero salt effect, PZSE)은 8.5로 비소에 대한 높은 흡착능은 이러한 적철석의 특성들에 기인한 것으로 판단된다. 동일한 수용상 농도와 pH 2.0∼12 범위에서 3가 비소와 5가 비소의 적철석에 대한 흡착량을 비교한결과 3가 비소가 5가 비소보다 큰 흡착량을 보였다. 그리고 pH에 따른 흡착경향은 3가 비소의 경우에는 pH 9.2까지 지속적으로 흡착량이 증가하다가 그 이상의 pH에서는 흡착량이 급격하게 감소한 반면, 5가 비소는 pH 2.0에서 가장 높은 흡착량을 나타내다가 pH가 증가하면서 지속적으로 감소하는 것으로 조사되었다. 이러한 pH에 따른 흡착특성은 pH에 따라서 적철석의 표면전하 특성과 비소 화학종의 존재형태가 변화하기 때문인 것으로 판단된다. 흡착 반응속도에 대한 실험 결과에 의하면, 두 비소 종 모두 20시간 이내에 평형 흡착에 도달하는 것으로 나타났다. 그리고 비소의 화학종과 관계없이 적철석과의 흡착반 응속도를 가장 잘 모사하는 반응속도 모델로는 유사이차(Pseudo-second-order) 모델로 평가되었으며, 5가 비소가 3가 비소보다 반응속도상수가 크게 나타났다. Hematite has been known to be the most stable form of various iron (oxyhydr)oxides in the surface environments. In this study, its properties as an adsorbent were examined and also adsorption of arsenic onto hematite was characterized as well. The specific surface area of hematite synthesized in our laboratory appeared to be 31.8 g m2/g and its point of zero salt effect, (PZSE) determined by potentiometric titration was observed 8.5. These features of hematite may contribute to high capacity of arsenic adsorption. From several adsorption experiments undertaken at the identical solution concentrations over pH 2∼12, the adsorption of As(III) (arsenite) was greater than that of As(V) (arsenate). As of pH-dependent adsorption patterns, in addition, arsenite adsorption gradually increased until pH 9.2 and then sharply decreased with pH, whereas adsorption of arsenate was greatest at pH 2.0 and steadily decreased with the increasing pH from 2 to 12. The characteristics of these pHdependent adsorption patterns might be caused by combined effects of the variation in the chemical speciation of arsenic and the surface charge of hematite. The experimental results on adsorption kinetics show that adsorption of both arsenic species onto hematite approached equilibrium within 20 h. Additionally, the pseudo-second-order model was evaluated to be the best fit for the adsorption kinetics of arsenic onto hematite, regardless of arsenic species, and the rate constant of As(V) adsorption was investigated to be larger than that of As(III).

      • KCI등재
      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼