RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Efficiency of gerAa, tupA and ca transformation in Bacillus subtilis for self-healing of concrete cracks

        Hanxing He,Gefei Li,Jiantao Zhang,Jinlong Zhang,Mingyue Luo,Wenkai Hu,Yamin Lin,Ziyu Deng,Zhicheng Liu,Weizhao Chen,Xu Deng 한양대학교 세라믹연구소 2019 Journal of Ceramic Processing Research Vol.20 No.5

        A genetic approach was proposed to modify the characteristics of Bacillus subtilis strain WB800 (B. subtilis WB800) for selfhealing of concrete cracks. Three genes, namely gerAa which encodes germination receptors activated by L-alanine, tupA which is responsible for the synthesis of teichuronopeptide, and ca which encodes carbonic anhydrase (CA) catalyzing the synthesis of carbonate ion, were separately transformed into WB800. To protect bacterial cells from being squeezed, microspheres were produced with microcrystal cellulose (MCC) before the introduction of bacteria into the specimens. The results showed that the modified B. subtilis expressing GerA achieved 39.9% of germination ratio compared to 17% by the original host cells. With the transformation of tupA, the modified strain demonstrated higher resistance to alkaline environments, tolerating pH as high as 11, while the original strain only tolerated pH 9. The modified strain expressing CA induced more calcium carbonate than the original cells. Energy dispersive spectroscopy (EDS) identified the produced precipitate to be calcite (CaCO3). Moreover, a mathematical model was developed to optimize the influential factors of calcium precipitation process. Finally, based on the above results, an effective self-healing of concrete crack was achieved. This study may provide a promising strategy to improve the efficiency of bacterial self-healing of concrete cracks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼