RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hydroxyapatite Nucleation and Growth on Collagen Electrospun Fibers Controlled with Different Mineralization Conditions and Phosvitin

        Yilin Jie,Zhaoxia Cai,Shanshan Li,Zhuqing Xie,Meihu Ma,Xi Huang 한국고분자학회 2017 Macromolecular Research Vol.25 No.9

        In a tenfold-concentrated simulated body fluid, a strategy for rapid deposition of a biomimetic calcium phosphate layer on the scaffolds of electrospun collagen nanofiber membranes was developed. The aim of this study was to explore the effects of mineralization conditions and phosvitin (PV) on hydroxyapatite nucleation and growth. The mineralization model, the pH of the environment, and the deposition time were optimized. Scanning electron microscopy (SEM) images demonstrated that homogeneous and well-crystallized inorganic mineral layers were generated in the dynamic mineralization model system after incubating 3 h at pH 5.7. PV, which possesses the highest level of phosphorylation among egg proteins, was used as a model protein to investigate the contribution of PV in the mineralization process. The morphological structure and composition of the collagen/calcium phosphate composite nanofibers were also characterized by energy dispersive spectroscopy, scanning photoelectron spectrometer, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. XRD results showed the transformation process of mineralization materials from dicalcium phosphate dihydrate (DCPD) to HA through the changes of characteristic peaks at approximately 11° of DCPD and 31.8° of HA. 1.0 mg/mL. Phosvitin significantly promoted the phase transformation from DCPD to hydroxyapatite. High performance liquid chromatography results indicated that PV induced the mineralization rather than being the part of the hydroxyapatite. The minerals formed on electrospun collagen nanofiber membranes were identified to be from hydroxyapatite. These findings extended the potential application field of PV to biomimetic material.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼