RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        A comparative study on metal species implanted amine–brookite–TiO2 nanorods for enhanced photocatalytic CO2 reduction

        Zhangjing Chen,Xinyu Tong,Gang Cheng 한국탄소학회 2023 Carbon Letters Vol.33 No.7

        Semiconductor-based photocatalytic carbon dioxide ( CO2) reduction is of great scientific importance in the field of alleviating global warming and energy crisis. Surface amine modification and cocatalyst loading on the catalyst surface could improve CO2 adsorption capacity and photogenerated charge separation. Herein, amine-modified brookite–TiO2 ( NH2–B–TiO2) coupled metal species (Cu, Ag, Ni(OH)2) cocatalysts have been successfully synthesized by chemical reduction method. The photocatalytic CO2 reduction results show that the CH4 production rates of NH2– B–TiO2/Cu, NH2– B–TiO2/Ag, and NH2– B–TiO2/Ni(OH)2 are 3.2, 12.5, and 1.7 times that of NH2– B–TiO2 (0.74 μmmol g? 1 h? 1), respectively. Results show the introduction of metal species on the surface of the catalyst enhances the absorption range of sunlight and the photogenerated carrier separation efficiency, resulting in enhancing the performance of photocatalytic CO2 reduction. This work provides a strategy for designing metal species-loaded amine-modified brookite–TiO2 by surface/interface regulation to improve photocatalytic efficiency.

      • SCIESCOPUSKCI등재

        Selectively anchoring Cu(OH)2 and CuO on amine‑modified brookite TiO2 for enhanced CO2 photoreduction

        Zhangjing Chen,Liangliang Li,Gang Cheng 한국탄소학회 2023 Carbon Letters Vol.33 No.5

        Photocatalytic CO2 reduction is a promising approach for reducing CO2 emissions and achieving the goal of carbon neutrality. In this work, selectively coupling Cu(OH)2 and CuO with amine-modified brookite TiO2 ( NH2–B–TiO2) has been achieved by a simple precipitation method. The results show that CuO is better than Cu(OH)2 as a co-catalyst to enhance the CO2 photoreduction capability of NH2– B–TiO2. The highest rates of CO2 conversion to CH4 and CO of NH2– B–TiO2–CuO composite reach 6.05 and 3.25 μmol h? 1 g? 1, respectively, which is higher than 8 times the yield of CH4 of NH2– B–TiO2. It is proposed that the NH2– B–TiO2–CuO composite offers an effective charge transfer through the formation of a p–n junction between NH2– B–TiO2 and CuO interfaces, while in the NH2– B–TiO2–Cu(OH)2 composite, the Cu(OH)2 dominantly serves as an electron sink to capture photo-induced electrons, promoting photo-induced carrier separation. This work provides an ingenious synthetic method for selectively anchoring Cu(OH)2 and CuO on semiconductors with different charge transfer routes for an efficient CO2 photoreduction.

      • KCI등재

        Oxygen vacancy engineering of TiO2-x nanostructures for photocatalytic CO2 reduction

        Deng Hexia,Zhu Xueteng,Chen Zhangjing,Zhao kai,Cheng Gang 한국탄소학회 2022 Carbon Letters Vol.32 No.7

        The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2-x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2-x nanostructures. The results show that the TiO2-x-6 h, TiO2-x-24 h, and TiO2-x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2-x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g−1 h−1. On the basis of photo/electrochemical measurements, the TiO2-x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼