RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Observer-based friction compensation in heavy-duty parallel robot control

        Kamil Vedat Sancak,Zeki Yagiz Bayraktaroglu 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.8

        This paper presents an experimental study on friction compensation for the high-precision tracking control of parallel manipulators. A Luenberger-like observer (LLO) and an extended state observer (ESO) are designed and implemented in real-time control of a 6-DoF heavy-duty Stewart-Gough platform (SGP). The dynamic Lu-Gre model is used in the identification of friction. Performances of the proposed observer-based friction compensators are compared to those of a model-based compensator in computed torque control. Experimental results show that the observer-based compensators significantly improve the tracking performances in high speed motions. Among the investigated observers, the ESO results in minimum RMS error in position tracking. Improvement in position tracking at velocity reversals of the individual leg motions is also observed with the contribution of observer-based compensation. The observer error dynamics is exponentially stable, and the convergence rate can be arbitrarily increased by tuning the observer gain.

      • KCI등재

        Consistent dynamic model identification of the Stäubli RX-160 industrial robot using convex optimization method

        Omer Faruk Argin,Zeki Yagiz Bayraktaroglu 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.5

        Dynamic models of robot manipulators with standard dynamic parameters are required for simulations, model-based controller design and external force estimation. The aim of this work is to identify the complete dynamic model of the 6-axis Stäubli RX-160 industrial robot. A convex optimization-based method is used for parameter identification. Consistent model parameters are obtained as the result of the optimization procedure subject to physical constraints. Low-speed behavior of the robot being dominated by joint friction, the dynamic model includes an algebraic friction model consisting of the Coulomb and viscous friction components along with the Stribeck effect. The coupled mechanical structure of the 5th and 6th joints, and elasticity due to the presence of balancing springs are also represented in the proposed dynamic model. The ordinary least square error method is used for the performance evaluation of the convex optimization-based method. Estimated parameters from both methods are experimentally verified over identification and test trajectories. The identified model is finally used as a basis in the estimation of external forces acting on the robot’s end-effector. The proposed sensor-less model-based approach for the estimation of external forces constitutes an alternative mean of experimental validation. Comparison of computed external forces with measured ones by an F/T transducer shows that the dynamic model obtained with the proposed method provides an accurate estimation.

      • KCI등재

        Nonlinear Computed Torque Control of 6-DoF Parallel Manipulators

        Kamil Vedat Sancak,Zeki Yagiz Bayraktaroglu 제어·로봇·시스템학회 2022 International Journal of Control, Automation, and Vol.20 No.7

        This paper presents an experimental study on high-precision motion control of heavy-duty parallel manipulators. Conventional independent joint control and computed torque control schemes are modified by the introduction of nonlinear loop gains in order to improve tracking performances. Asymptotic stability of the controllers has been analyzed and proved based on the Lyapunov’s direct method. An extended state observer for feedback compensation against disturbances is designed and implemented in the control loops. The observer error dynamics is shown to be exponentially stable and the error convergence rate can be made arbitrarily high by tuning the gain of the observer. Performances of the proposed nonlinear controllers are experimentally investigated in the control of a 6-DoF Stewart-Gough Platform in roll-pitch motion. Comparisons between the proposed controllers and conventional controllers show that tracking precision of the platform is improved through the nonlinear design of the controller gains in both independent joint control and computed torque control schemes. Although the computed torque control method proves to achieve the best tracking precision in high speed motions of the platform legs, independent joint control with nonlinear gains displays challenging performance as an interesting alternative.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼