RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Polyelectrolyte Hydrogels for Replacement and Regeneration of Biological Tissues

        권혁준,Kazunori Yasuda,Jian Ping Gong,Yoshihiro Ohmiya 한국고분자학회 2014 Macromolecular Research Vol.22 No.3

        Polyelectrolyte gels are charged polymer networks with macro-ions fixed on the polymer chains. Thesegels have considerable potential for biological applications such as cellular scaffolds and the replacement of variousbiological tissues. Moreover, high strength up to several tens of megapascals can be obtained with polyelectrolytegels by incorporating double network structure in the gel. This article gives a concise review to introduce thefundamental properties of polyelectrolyte gels and biological applications for tissue engineering using theircharacteristic properties. Applications of polyelectrolyte gels have been highlighted in the fields of artificial muscle,artificial corneas, artificial cartilage, scaffolds for in vitro stem cell culture, and scaffolds for in vivo cartilage regeneration. This review suggests that polyelectrolyte gels would be a useful material for the successful replacement and regenerationof damaged or diseased tissues.

      • SCISCIESCOPUS

        Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.

        Lee, Yool,Lee, Jiwon,Kwon, Ilmin,Nakajima, Yoshihiro,Ohmiya, Yoshihiro,Son, Gi Hoon,Lee, Kun Ho,Kim, Kyungjin Cambridge University Press 2010 Journal of cell science Vol.123 No.20

        <P>The transcription factor CLOCK-BMAL1 is a core component of the molecular clock machinery that drives circadian gene expression and physiology in mammals. Recently, we reported that this heterodimeric transcription factor functions as a signaling molecule in response to the resetting stimuli via the Ca²+-dependent protein kinase C pathway. Here, we demonstrate that the CREB-binding protein (CBP) plays a key role in rapid activation of the CLOCK-BMAL1 heterodimer that leads to phase resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation (BiFC) assay revealed that CLOCK and BMAL1 dimerize in the cytoplasm and subsequently translocate into the nucleus in response to serum stimuli (mean time duration was 29.2 minutes and mean velocity 0.7 관m/minute). Concomitantly, BMAL1 rapidly recruited CBP on Per1 promoter E-box, but not p300 (a functional analog of CBP), in the discrete nuclear foci. However, recruitment of CBP by cAMP/Ca²+ response element-binding (CREB) protein on CRE was not markedly increased upon delivery of the resetting stimuli. Furthermore, overexpression of CBP greatly potentiated the CLOCK-BMAL1-mediated Per1 transcription, and this effect was completely abolished by site-directed mutation of E-box elements, but not by the mutation of CRE in the Per1 promoter. Furthermore, molecular knockdown of CBP severely dampened circadian oscillation of clock gene expression triggered by the resetting stimuli. These findings suggest that CBP recruitment by BMAL1 mediates acute transactivation of CLOCK-BMAL1, thereby inducing immediate-early Per1 transcription and phase resetting of the circadian clock.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼